площадь области ограниченной линиями интеграл

Видео:Определённый интеграл. ПлощадьСкачать

Определённый интеграл.  Площадь

Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S ( G ) = ∫ a b f ( x ) d x для непрерывной и неотрицательной функции y = f ( x ) на отрезке [ a ; b ] ,

S ( G ) = — ∫ a b f ( x ) d x для непрерывной и неположительной функции y = f ( x ) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f ( x ) или x = g ( y ) .

Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Пусть функции y = f 1 ( x ) и y = f 2 ( x ) определены и непрерывны на отрезке [ a ; b ] , причем f 1 ( x ) ≤ f 2 ( x ) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 ( x ) и y = f 2 ( x ) будет иметь вид S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 ( y ) и x = g 2 ( y ) : S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) d y .

Разберем три случая, для которых формула будет справедлива.

площадь области ограниченной линиями интеграл

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

площадь области ограниченной линиями интеграл

Поэтому, S ( G ) = S ( G 2 ) — S ( G 1 ) = ∫ a b f 2 ( x ) d x — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S ( G ) = S ( G 2 ) + S ( G 1 ) = ∫ a b f 2 ( x ) d x + — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x

Графическая иллюстрация будет иметь вид:

площадь области ограниченной линиями интеграл

Если обе функции неположительные, получаем: S ( G ) = S ( G 2 ) — S ( G 1 ) = — ∫ a b f 2 ( x ) d x — — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x . Графическая иллюстрация будет иметь вид:

площадь области ограниченной линиями интеграл

Перейдем к рассмотрению общего случая, когда y = f 1 ( x ) и y = f 2 ( x ) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n — 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i — 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 x 1 x 2 . . . x n — 1 x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S ( G i ) = ∫ x i — 1 x i ( f 2 ( x ) — f 1 ( x ) ) d x , i = 1 , 2 , . . . , n

S ( G ) = ∑ i = 1 n S ( G i ) = ∑ i = 1 n ∫ x i x i f 2 ( x ) — f 1 ( x ) ) d x = = ∫ x 0 x n ( f 2 ( x ) — f ( x ) ) d x = ∫ a b f 2 ( x ) — f 1 ( x ) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

площадь области ограниченной линиями интеграл

Формулу S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f ( x ) и x = g ( y ) .

Видео:Найти площадь фигуры, ограниченной линиями. Пример 1.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 1.

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Необходимо определить площадь фигуры, которая ограничена параболой y = — x 2 + 6 x — 5 и прямыми линиями y = — 1 3 x — 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

площадь области ограниченной линиями интеграл

На отрезке [ 1 ; 4 ] график параболы y = — x 2 + 6 x — 5 расположен выше прямой y = — 1 3 x — 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S ( G ) = ∫ 1 4 — x 2 + 6 x — 5 — — 1 3 x — 1 2 d x = = ∫ 1 4 — x 2 + 19 3 x — 9 2 d x = — 1 3 x 3 + 19 6 x 2 — 9 2 x 1 4 = = — 1 3 · 4 3 + 19 6 · 4 2 — 9 2 · 4 — — 1 3 · 1 3 + 19 6 · 1 2 — 9 2 · 1 = = — 64 3 + 152 3 — 18 + 1 3 — 19 6 + 9 2 = 13

Ответ: S ( G ) = 13

Рассмотрим более сложный пример.

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

площадь области ограниченной линиями интеграл

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З : x ≥ — 2 x 2 = x + 2 2 x 2 — x — 2 = 0 D = ( — 1 ) 2 — 4 · 1 · ( — 2 ) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 — 9 2 = — 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке ( 2 ; 2 ) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S ( G ) = ∫ 2 7 ( x — x + 2 ) d x = x 2 2 — 2 3 · ( x + 2 ) 3 2 2 7 = = 7 2 2 — 2 3 · ( 7 + 2 ) 3 2 — 2 2 2 — 2 3 · 2 + 2 3 2 = = 49 2 — 18 — 2 + 16 3 = 59 6

Ответ: S ( G ) = 59 6

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = — x 2 + 4 x — 2 .

Решение

Нанесем линии на график.

площадь области ограниченной линиями интеграл

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и — x 2 + 4 x — 2 . При условии, что x не равно нулю, равенство 1 x = — x 2 + 4 x — 2 становится эквивалентным уравнению третьей степени — x 3 + 4 x 2 — 2 x — 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1 : — 1 3 + 4 · 1 2 — 2 · 1 — 1 = 0 .

Разделив выражение — x 3 + 4 x 2 — 2 x — 1 на двучлен x — 1 , получаем: — x 3 + 4 x 2 — 2 x — 1 ⇔ — ( x — 1 ) ( x 2 — 3 x — 1 ) = 0

Оставшиеся корни мы можем найти из уравнения x 2 — 3 x — 1 = 0 :

x 2 — 3 x — 1 = 0 D = ( — 3 ) 2 — 4 · 1 · ( — 1 ) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 — 13 2 ≈ — 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S ( G ) = ∫ 1 3 + 13 2 — x 2 + 4 x — 2 — 1 x d x = — x 3 3 + 2 x 2 — 2 x — ln x 1 3 + 13 2 = = — 3 + 13 2 3 3 + 2 · 3 + 13 2 2 — 2 · 3 + 13 2 — ln 3 + 13 2 — — — 1 3 3 + 2 · 1 2 — 2 · 1 — ln 1 = 7 + 13 3 — ln 3 + 13 2

Ответ: S ( G ) = 7 + 13 3 — ln 3 + 13 2

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = — log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = — log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

площадь области ограниченной линиями интеграл

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке ( 0 ; 0 ) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения — log 2 x + 1 = 0 , поэтому графики функций y = — log 2 x + 1 и y = 0 пересекаются в точке ( 2 ; 0 ) .

x = 1 является единственным корнем уравнения x 3 = — log 2 x + 1 . В связи с этим графики функций y = x 3 и y = — log 2 x + 1 пересекаются в точке ( 1 ; 1 ) . Последнее утверждение может быть неочевидным, но уравнение x 3 = — log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = — log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S ( G ) = ∫ 0 1 x 3 d x + ∫ 1 2 ( — log 2 x + 1 ) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S ( G ) = ∫ 0 2 x 3 d x — ∫ 1 2 x 3 — ( — log 2 x + 1 ) d x

В этом случае для нахождения площади придется использовать формулу вида S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) ) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и — log 2 x + 1 относительно x :

y = x 3 ⇒ x = y 3 y = — log 2 x + 1 ⇒ log 2 x = 1 — y ⇒ x = 2 1 — y

Получим искомую площадь:

S ( G ) = ∫ 0 1 ( 2 1 — y — y 3 ) d y = — 2 1 — y ln 2 — y 4 4 0 1 = = — 2 1 — 1 ln 2 — 1 4 4 — — 2 1 — 0 ln 2 — 0 4 4 = — 1 ln 2 — 1 4 + 2 ln 2 = 1 ln 2 — 1 4

Ответ: S ( G ) = 1 ln 2 — 1 4

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x — 3 , y = — 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = — 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x — 3 .

площадь области ограниченной линиями интеграл

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = — 1 2 x + 4 :

x = — 1 2 x + 4 О Д З : x ≥ 0 x = — 1 2 x + 4 2 ⇒ x = 1 4 x 2 — 4 x + 16 ⇔ x 2 — 20 x + 64 = 0 D = ( — 20 ) 2 — 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 — 144 2 = 4 П р о в е р к а : x 1 = 16 = 4 , — 1 2 x 1 + 4 = — 1 2 · 16 + 4 = — 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , — 1 2 x 2 + 4 = — 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ ( 4 ; 2 ) т о ч к а п е р е с е ч е н и я y = x и y = — 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x — 3 :

x = 2 3 x — 3 О Д З : x ≥ 0 x = 2 3 x — 3 2 ⇔ x = 4 9 x 2 — 4 x + 9 ⇔ 4 x 2 — 45 x + 81 = 0 D = ( — 45 ) 2 — 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 — 729 8 = 9 4 П р о в е р к а : x 1 = 9 = 3 , 2 3 x 1 — 3 = 2 3 · 9 — 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ ( 9 ; 3 ) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x — 3 x 2 = 9 4 = 3 2 , 2 3 x 1 — 3 = 2 3 · 9 4 — 3 = — 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = — 1 2 x + 4 и y = 2 3 x — 3 :

— 1 2 x + 4 = 2 3 x — 3 ⇔ — 3 x + 24 = 4 x — 18 ⇔ 7 x = 42 ⇔ x = 6 — 1 2 · 6 + 4 = 2 3 · 6 — 3 = 1 ⇒ ( 6 ; 1 ) т о ч к а п е р е с е ч е н и я y = — 1 2 x + 4 и y = 2 3 x — 3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

площадь области ограниченной линиями интеграл

Тогда площадь фигуры равна:

S ( G ) = ∫ 4 6 x — — 1 2 x + 4 d x + ∫ 6 9 x — 2 3 x — 3 d x = = 2 3 x 3 2 + x 2 4 — 4 x 4 6 + 2 3 x 3 2 — x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 — 4 · 6 — 2 3 · 4 3 2 + 4 2 4 — 4 · 4 + + 2 3 · 9 3 2 — 9 2 3 + 3 · 9 — 2 3 · 6 3 2 — 6 2 3 + 3 · 6 = = — 25 3 + 4 6 + — 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

площадь области ограниченной линиями интеграл

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x — 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = — 1 2 x + 4 ⇒ x = — 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S ( G ) = ∫ 1 2 3 2 y + 9 2 — — 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = ∫ 1 2 7 2 y — 7 2 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = 7 4 y 2 — 7 4 y 1 2 + — y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 — 7 4 · 2 — 7 4 · 1 2 — 7 4 · 1 + + — 3 3 3 + 3 · 3 2 4 + 9 2 · 3 — — 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S ( G ) = 11 3

Видео:Найти площадь фигуры, ограниченной линиями. Пример 5.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 5.

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Видео:Применение определенного интеграла при решении геометр. и физических задач. Практ. часть. 11 класс.Скачать

Применение определенного интеграла при решении геометр. и физических задач. Практ. часть. 11 класс.

1.8. Как вычислить площадь с помощью определённого интеграла?

Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями площадь области ограниченной линиями интеграл.

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая площадь области ограниченной линиями интегралопределяет ось площадь области ограниченной линиями интеграл, прямые площадь области ограниченной линиями интегралпараллельны оси площадь области ограниченной линиями интеграли парабола площадь области ограниченной линиями интегралсимметрична относительно оси площадь области ограниченной линиями интеграл, для неё находим несколько опорных точек:
площадь области ограниченной линиями интеграл

Искомую фигуру желательно штриховать:
площадь области ограниченной линиями интеграл

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке площадь области ограниченной линиями интегралграфик функции площадь области ограниченной линиями интегралрасположен над осью площадь области ограниченной линиями интеграл, поэтому искомая площадь:
площадь области ограниченной линиями интеграл

Ответ: площадь области ограниченной линиями интеграл

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями площадь области ограниченной линиями интеграли осью площадь области ограниченной линиями интеграл

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью площадь области ограниченной линиями интеграл:

Пример 12
Вычислить площадь фигуры, ограниченной линиями площадь области ограниченной линиями интеграл, площадь области ограниченной линиями интеграли координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:
площадь области ограниченной линиями интеграл
и выполним чертёж, получая фигуру площадью около двух клеток:
площадь области ограниченной линиями интеграл
Если криволинейная трапеция расположена не выше оси площадь области ограниченной линиями интеграл, то её площадь можно найти по формуле: площадь области ограниченной линиями интеграл.
В данном случае: площадь области ограниченной линиями интеграл

Ответ: площадь области ограниченной линиями интеграл– ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями площадь области ограниченной линиями интеграл, площадь области ограниченной линиями интеграл.

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы площадь области ограниченной линиями интеграли прямой площадь области ограниченной линиями интеграл, поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:
площадь области ограниченной линиями интеграл
таким образом:
площадь области ограниченной линиями интеграл

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой площадь области ограниченной линиями интегралвсё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
площадь области ограниченной линиями интеграл– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:
площадь области ограниченной линиями интеграл

Выполним чертеж:
площадь области ограниченной линиями интеграл

А теперь рабочая формула: если на отрезке площадь области ограниченной линиями интегралнекоторая непрерывная функция площадь области ограниченной линиями интегралбольше либо равна непрерывной функции площадь области ограниченной линиями интеграл, то площадь фигуры, ограниченной графиками этих функций и отрезками прямых площадь области ограниченной линиями интеграл, можно найти по формуле:
площадь области ограниченной линиями интеграл

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке площадь области ограниченной линиями интегралпарабола располагается выше прямой, а поэтому из площадь области ограниченной линиями интегралнужно вычесть площадь области ограниченной линиями интеграл

Завершение решения может выглядеть так:

На отрезке площадь области ограниченной линиями интеграл: площадь области ограниченной линиями интеграл, по соответствующей формуле:
площадь области ограниченной линиями интеграл

Ответ: площадь области ограниченной линиями интеграл

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы площадь области ограниченной линиями интеграл. Поскольку ось площадь области ограниченной линиями интегралзадаётся уравнением площадь области ограниченной линиями интеграл, то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу площадь области ограниченной линиями интеграллибо площадь области ограниченной линиями интеграл

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) площадь области ограниченной линиями интеграл, площадь области ограниченной линиями интеграл.

б) площадь области ограниченной линиями интеграл, площадь области ограниченной линиями интеграл, площадь области ограниченной линиями интеграл

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями площадь области ограниченной линиями интеграл

Решение: выполним бесхитростный чертёж,
площадь области ограниченной линиями интеграл
хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую площадь области ограниченной линиями интегралможно недочертить до оси площадь области ограниченной линиями интеграл, и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке площадь области ограниченной линиями интегралнад осью площадь области ограниченной линиями интегралрасположен график прямой площадь области ограниченной линиями интеграл;
2) на отрезке площадь области ограниченной линиями интегралнад осью площадь области ограниченной линиями интегралрасположен график гиперболы площадь области ограниченной линиями интеграл.

Совершенно понятно, что площади можно (и нужно) сложить:
площадь области ограниченной линиями интеграл

Ответ: площадь области ограниченной линиями интеграл

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями площадь области ограниченной линиями интеграл, площадь области ограниченной линиями интеграл, площадь области ограниченной линиями интеграли координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс площадь области ограниченной линиями интегралзачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой площадь области ограниченной линиями интеграли прямой площадь области ограниченной линиями интеграл, где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:
площадь области ограниченной линиями интеграл
и находим его корни:
площадь области ограниченной линиями интегралнижний предел интегрирования, площадь области ограниченной линиями интегралверхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция площадь области ограниченной линиями интеграл(Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле площадь области ограниченной линиями интеграл, все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

Полную и свежую версию данного курса в pdf-формате ,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Видео:Геометрический смысл определенного интеграла (2)Скачать

Геометрический смысл определенного интеграла (2)

Вычисление двойных интегралов: теория и примеры

Видео:Площадь фигуры через двойной интеграл в полярных координатахСкачать

Площадь фигуры через двойной интеграл в полярных координатах

Что значит вычислить двойной интеграл?

Двойные интегралы – это обобщение понятия определённого интеграла для функции двух переменных, заданной как z = f(x, y) .

Записывается двойной интеграл так:

площадь области ограниченной линиями интеграл.

Здесь D – плоская фигура, ограниченная линиями, выражения которых (равенства) даны в задании вычисления двойного интеграла. Слева и справа – равенствами, в которых слева переменная x , а сверху и снизу – равенствами, в которых слева переменная y . Это место и далее – одно из важнейших для понимания техники вычисления двойного интеграла.

Вычислить двойной интеграл — значит найти число, равное площади упомянутой фигуры D .

Пока мы не касаемся определения двойного интеграла, а будем учиться его вычислять. Понять, что такое двойной интеграл, проще, когда решены несколько задач на его вычисление, поэтому определение двойного интеграла вы найдёте в конце этого урока. Чуть забегая вперёд, можно лишь отметить, что определение двойного интеграла также связано с упоминавшейся фигурой D .

В случае если фигура D представляет собой прямоугольник, все линии, ограничивающие её – это прямые линии. Если фигура D — криволинейна, то слева и справа она ограничена прямыми, а сверху и снизу – кривыми линиями, заданными равенствами, которые даны в задании. Бывают и случаи, когда фигура D – треугольник, но о таких случаях чуть дальше.

Для вычисления двойного интеграла нужно, таким образом, рассортировать линии, огранивающие фигуру D , которая имеет строгое название – область интегрирования. Рассортировать на левые и правые и на верхние и нижние. Это потребуется при сведении двойного интеграла к повторному интегралу – методе вычисления двойного интеграла.

Случай прямоугольной области:

площадь области ограниченной линиями интеграл

Случай криволинейной области:

площадь области ограниченной линиями интеграл

А это уже решение знакомых нам определённых интегралов, в которых заданы верхний и нижний пределы интегрирования. Выражения, задающие линии, которые ограничивают фигуру D , будут пределами интегрирования для обычных определённых интегралов, к которым мы уже подходим.

Видео:Криволинейная трапеция и ее площадь. 11 класс.Скачать

Криволинейная трапеция и ее площадь. 11 класс.

Сведение двойного интеграла к повторному

Случай прямоугольной области

Пусть дана функция двух переменных f(x, y) и ограничения для D : D = <(x; y) | axb; cyd> , означающие, что фигуру D слева и справа ограничивают прямые x = a и x = b , а снизу и сверху — прямые y = c и y = d . Здесь a, b, c, d — числа.

Пусть для такой функции существует двойной интеграл

площадь области ограниченной линиями интеграл.

Чтобы вычислить этот двойной интеграл, нужно свести его к повторному интегралу, который имеет вид

площадь области ограниченной линиями интеграл.

Здесь пределы интегрирования a, b, c, d — числа, о которых только что упоминалось.

Сначала нужно вычислять внутренний (правый) определённый интеграл, затем — внешний (левый) определённый интеграл.

Можно и поменять ролями x и y. Тогда повторный интеграл будет иметь вид

площадь области ограниченной линиями интеграл.

Такой повторный интеграл нужно решать точно так же: сначала — внутренний (правый) интеграл, затем — внешний (левый).

Пример 1. Вычислить двойной интеграл

площадь области ограниченной линиями интеграл,

площадь области ограниченной линиями интеграл.

Решение. Сводим данный двойной интеграл к повторному интегралу

площадь области ограниченной линиями интеграл.

На чертеже строим область интегрирования:

площадь области ограниченной линиями интеграл

Вычисляем внутренний (правый) интеграл, считая игрек константой. Пользуемся формулой 7 из таблицы интегралов. Получаем.

площадь области ограниченной линиями интеграл.

Теперь вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого), пользуясь для каждого слагаемого той же формулой 7:

площадь области ограниченной линиями интеграл

Результат и будет решением данного двойного интеграла.

Пример 2. Вычислить двойной интеграл

площадь области ограниченной линиями интеграл,

площадь области ограниченной линиями интеграл.

Решение. Сводим данный двойной интеграл к повторному интегралу

площадь области ограниченной линиями интеграл.

На чертеже строим область интегрирования:

площадь области ограниченной линиями интеграл

Вычисляем внутренний (правый) интеграл, считая икс константой. Пользуясь формулой 9 из таблицы неопределенных интегралов, получаем

площадь области ограниченной линиями интеграл

Теперь вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого). Пользуемся формулой 10 из таблицы неопределенных интегралов и формулой Ньютона-Лейбница для вычисления определенного интеграла:

площадь области ограниченной линиями интеграл

Результат и будет решением данного двойного интеграла.

Случай криволинейной или треугольной области

Пусть снова дана функция двух переменных f(x, y) , а ограничения для D : уже несколько другого вида:

площадь области ограниченной линиями интеграл.

Эта запись означает, что фигуру D слева и справа ограничивают, как и в случае прямолинейной области — прямые x = a и x = b , но снизу и сверху — кривые, которые заданы уравнениями площадь области ограниченной линиями интеграли площадь области ограниченной линиями интеграл. Иными словами, площадь области ограниченной линиями интеграли площадь области ограниченной линиями интеграл— функции.

Пусть для такой функции также существует двойной интеграл

площадь области ограниченной линиями интеграл.

Чтобы вычислить этот двойной интеграл, нужно свести его к повторному интегралу, который имеет вид

площадь области ограниченной линиями интеграл.

Здесь пределы интегрирования a и b — числа, а площадь области ограниченной линиями интеграли площадь области ограниченной линиями интеграл— функции. В случае треугольной области одна из функций площадь области ограниченной линиями интегралили площадь области ограниченной линиями интеграл— это уравнение прямой линии. Такой случай будет разобран в примере 3.

Как и в случае прямолинейной области, сначала нужно вычислять правый определённый интеграл, затем — левый определённый интеграл.

Точно так же можно поменять ролями x и y. Тогда повторный интеграл будет иметь вид

площадь области ограниченной линиями интеграл.

Такой повторный интеграл нужно решать точно так же: сначала — внутренний (правый) интеграл, затем — внешний (левый).

Пример 3. Вычислить двойной интеграл

площадь области ограниченной линиями интеграл,

площадь области ограниченной линиями интеграл.

Решение. Сводим данный двойной интеграл к повторному интегралу

площадь области ограниченной линиями интеграл.

На чертеже строим область интегрирования и видим, что она треугольная:

площадь области ограниченной линиями интеграл

Вычисляем внутренний (правый) интеграл, считая икс константой. Пользуясь формулами 6 и 7 из таблицы неопределенных интегралов, получаем

площадь области ограниченной линиями интеграл

Теперь вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого). Сначала представляем этот интеграл в виде суммы интегралов:

площадь области ограниченной линиями интеграл.

площадь области ограниченной линиями интеграл

Вычисляем второе слагаемое, пользуясь все той же формулой:

площадь области ограниченной линиями интеграл

Вычисляем третье слагаемое, также по формуле 7:

площадь области ограниченной линиями интеграл

Получаем сумму, которая и будет решением данного двойного интеграла:

площадь области ограниченной линиями интеграл.

Пример 4. Вычислить двойной интеграл

площадь области ограниченной линиями интеграл,

площадь области ограниченной линиями интеграл.

Решение. Сводим данный двойной интеграл к повторному интегралу

площадь области ограниченной линиями интеграл.

На чертеже строим область интегрирования:

площадь области ограниченной линиями интеграл

Пользуясь формулой Ньютона-Лейбница, вычисляем внутренний (правый) интеграл, считая икс константой. Получаем.

площадь области ограниченной линиями интеграл.

Теперь, пользуясь формулой 7 из таблицы неопределенных интегралов, вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

площадь области ограниченной линиями интеграл

Результат и будет решением данного двойного интеграла.

Видео:Вычисление площади фигуры, ограниченной заданными линиямиСкачать

Вычисление площади фигуры, ограниченной заданными линиями

Вычислить двойной интеграл самостоятельно, а затем посмотреть решение

Пример 5. Вычислить двойной интеграл

площадь области ограниченной линиями интеграл,

если область D ограничена прямыми

площадь области ограниченной линиями интеграл.

Пример 6. Вычислить двойной интеграл

площадь области ограниченной линиями интеграл,

если область D ограничена прямыми

площадь области ограниченной линиями интеграл.

Видео:Двойной интеграл. Площадь плоской фигуры.Скачать

Двойной интеграл. Площадь плоской фигуры.

x-правильная и неправильная, y-правильная и неправильная области интегрирования

Случается, область интегрирования двойного интеграла ограничена такими линиями, что возникает необходимость разбить область интегрирования на части и решать каждый соответствующий повторный интеграл отдельно. Это случаи, когда:

1) область интегрирования представляет собой фигуру, имеющую в виде нижней или верхней (левой или правой) границы две или более двух прямых или кривых линий;

2) область интегрирования представляет собой фигуру, границу которой прямые пересекают более чем в двух точках.

Если вышесказанное относится к левой или правой границе области интегрирования, то есть ограничениях, заданных линиями, выраженными через x, то область интегрирования называется x-неправильной. Если же прямая y = y 0 пересекает соответствующую границу лишь в одной точке и если границей служит лишь одна прямая или кривая, то область интегрирования называется x-правильной

Аналогично, если границу, заданную линиями, выраженными через y, прямая x = x 0 пересекает более чем в одной точке или если границей служат более одной прямой или кривой, то область интегрирования называется y-неправильной. Вывести теперь признаки y-правильной области, надо полагать, совсем просто.

До сих пор мы рассматривали примеры с x-неправильными и y-правильными областями интегрирования. Теперь рассмотрим случаи, когда условие правильности нарушается.

Пример 7. Вычислить двойной интеграл площадь области ограниченной линиями интеграл, область интегрирования которого ограничена линиями y = x , xy = 1 , y = 2 .

площадь области ограниченной линиями интеграл

Решение. Область интегрирования является y-неправильной, так как её нижнюю границу нельзя задать одной линией y = y(x) . Как видно на рисунке выше, нижняя граница складывается из y = x (тёмно-бордовая) и xy = 1 (зелёная). Поэтому прямой x = 1 (чёрная) можем разбить область интегрирования на две части — площадь области ограниченной линиями интеграли площадь области ограниченной линиями интеграл.

Вычисляется этот двойной интеграл так:

площадь области ограниченной линиями интеграл

Видео:Найти площадь фигуры, ограниченной линиямиСкачать

Найти площадь фигуры, ограниченной линиями

Смена порядка интегрирования

Как уже отмечалось выше, после приведения двойного интеграла к повторному интегралу, можно поменять переменные x и y ролями, или, говоря иначе, поменять порядок интегрирования.

Смена порядка интегрирования образно может быть описана следующими словами О’Генри: «Так ведёт себя обитатель джунглей — зверь, попав в клетку, и так ведёт себя обитатель клетки — человек, заблудившись в джунглях сомнений». Результат, так же по О’Генри один и тот же: «Чалмерс разорвал письмо на тысячу мельчайших клочков и принялся терзать свой дорогой ковёр, расхаживая по нему взад и вперёд». (О’Генри. Шехерезада с Мэдисон-сквера.)

Тогда, если левый интеграл у нас по переменной x, а правый — по y, то после смены порядка интегрирования всё будет наоборот. Тогда пределы интегрирования для «нового» игрека нужно «позаимствовать» у «старого» икса, а пределы интегрирования для «нового» икса получить в виде обратной функции, разрешив относительно икса уравнение, задававшее предел для игрека.

Пример 8. Сменить порядок интегрирования для повторного интеграла

площадь области ограниченной линиями интеграл.

Решение. После смены порядка интегрирования интеграл по игреку станет левым, а интеграл по иксу — правым. Пределы интегрирования для «нового» игрека позаимствуем у «старого» икса, то есть нижний предел равен нулю, а верхний — единице. Пределы интегрирования для «старого» игрека заданы уравнениями площадь области ограниченной линиями интеграли площадь области ограниченной линиями интеграл. Разрешив эти уравнения относительно икса, получим новые пределы интегрирования для икса:

площадь области ограниченной линиями интеграл(нижний) и площадь области ограниченной линиями интеграл(верхний).

Таким образом, после смены порядка интегрирования повторный интеграл запишется так:

площадь области ограниченной линиями интеграл.

После смены порядка интегрирования в двойном интеграле нередко область интегрирования превращается в y-неправильную или x-неправильную (см. предыдущий параграф). Тогда требуется разбить область интегрирования на части и решать каждый соответствующий повторный интеграл отдельно.

Поскольку разбиение области интегрирования на части представляет определённые трудности для многих студентов, то не ограничимся примером, приведённым в предыдущем параграфе, а разберём ещё пару примеров.

Пример 9. Сменить порядок интегрирования для повторного интеграла

площадь области ограниченной линиями интеграл.

Решение. Итак, область интегрирования данного повторного интеграла ограничена прямыми y = 1 , y = 3 , x = 0 , x = 2y .

При интегрировании в другом порядке нижняя граница области состоит из двух прямых: AB и BC , которые заданы уравнениями y = 1 и y = x/2 , что видно на рисунке ниже.

площадь области ограниченной линиями интеграл

Выход из такой неопределённости состоит в разбиении области интегрирования на две части. Делить область интегрирования будет прямая . Новые пределы интегрирования вычисляем, находя обратную функцию. Соответственно этому решению повторный интеграл после смены порядка интегрирования будет равным сумме двух интегралов:

площадь области ограниченной линиями интеграл

Естественно, таким же будет решение двойного интеграла, который сводится к повторному интегралу, данному в условии этого примера.

Пример 10. Сменить порядок интегрирования для повторного интеграла

площадь области ограниченной линиями интеграл.

Решение. Итак, область интегрирования повторного интеграла ограничена прямыми x = 0 , x = 2 и кривыми площадь области ограниченной линиями интеграли площадь области ограниченной линиями интеграл.

Как видно на рисунке ниже, прямая, параллельная оси 0x , будет пересекать нижнюю границу области интегрирования более чем в двух точках.

площадь области ограниченной линиями интеграл

Поэтому разобьём область интегрирования на три части прямыми, которые на рисунке начерчены чёрным. Новые пределы интегрирования вычисляем, находя обратную функцию. Пределы для трёх новых областей интегрирования будут следующими.

Для площадь области ограниченной линиями интеграл:

площадь области ограниченной линиями интеграл

Для площадь области ограниченной линиями интеграл:

площадь области ограниченной линиями интеграл

Для площадь области ограниченной линиями интеграл:

площадь области ограниченной линиями интеграл

Соответственно этому решению повторный интеграл после смены порядка интегрирования будет равным сумме трёх интегралов:

площадь области ограниченной линиями интеграл

Той же сумме трёх интегралов будет равен и двойной интеграл, который сводится к повторному интегралу, данному в условии этого примера.

И всё же обстоятельства непреодолимой силы нередко мешают студентам уже на предыдущем шаге — расстановке пределов интегрирования. Тревога и смятение не лишены некоторого основания: если для разбиения области интегрирования на части обычно достаточно приглядеться к чертежу, а для решения повторного интеграла — таблицы интегралов, то в расстановке пределов интегрирования нужен некоторый опыт тренировок. Пробежим пример, в котором остановимся только на расстановке пределов интегрирования и — почти на автомате — на разбиении области и опустим само решение.

Пример 11. Найти пределы интегрирования двойного интеграла, если область интегрирования D задана следующим образом:

Решение. В явном виде (через x и y «без примесей») линии, ограничивающие область интегрирования, не заданы. Так как для икса ими чаще всего оказываются прямые, касающиеся в одной точке верхней и нижней границ, выраженных через игрек, то пойдём именно по этому пути. Тем более, что при смене порядка интегирования мы получим область интегрирования с такой же площадью. Разрешим неравенства относительно игрека и получим:

Строим полученные линии на чертёже. Пределами интегрирования по иксу действительно служат линии x = 0 и x = 2 . Но область интегрирования оказалась y-неправильной, так как её верхнюю границу нельзя задать одной линией y = y(x) .

площадь области ограниченной линиями интеграл

Поэтому разобьём область интегрирования на две части при помощи прямой x = 1 (на чертеже — чёрного цвета).

Теперь данный двойной интеграл можем записать как сумму двух повторных интегралов с правильно расставленными пределами интегрирования:

площадь области ограниченной линиями интеграл.

Видео:Интегралы №12 Вычисление площадейСкачать

Интегралы №12 Вычисление площадей

Вычисление площади и объёма с помощью двойных интегралов

В этом параграфе даны примеры, в которых двойной интеграл равен отрицательному числу. Но, как отмечалось в теоретической справке в начале урока, площадь области интегрирования равна самому двойному интегралу. А если двойной интеграл — отрицательное число, то площадь равна его модулю.

Вычисление площади плоской фигуры с помощью двойного интеграла имеет более универсальный характер, чем вычисление площади криволинейной трапеции с помощью определённого интеграла. С помощью двойного интеграла можно вычислять площади не только криволинейной трапеции, но и фигур, расположенных произвольно по отношению к к координатным осям.

Пример 12. Вычислить площадь области, ограниченной линиями y² = x + 1 и x + y = 1 .

Решение. Область интегрирования представляет собой фигуру, ограниченную слева параболой y² = x + 1 , а справа прямой y = 1 — x . (рисунок ниже).

площадь области ограниченной линиями интеграл

Решая как систему уравнения этих линий, получаем точки их пересечения: площадь области ограниченной линиями интеграл. Ординаты этих точек — — 2 и 1 будут соответственно нижним и верхним пределами интегрирования по игреку. Итак, площадь фигуры найдём как двойной интеграл, сведённый к повторному:

площадь области ограниченной линиями интеграл.

Вычисляем внутренний (правый) интеграл:

площадь области ограниченной линиями интеграл.

Вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

площадь области ограниченной линиями интеграл

Как видим, решение двойного интеграла — отрицательное число. За площадь данной плоской фигуры принимается модуль этого числа, то есть 4/9.

Объём криволинейного цилиндра, ограниченного сверху поверхностью площадь области ограниченной линиями интеграл, снизу плоскостью z = 0 и с боковых сторон цилиндрической поверхностью, у которой образующие параллельны оси 0z , а направляющей служит контур области, вычисляется также по формуле двойного интеграла. То есть, с помощью двойного интеграла можно вычислять объёмы тел.

Пример 13. Вычислить объём тела, ограниченного поверхностями x = 0 , y = 0 , z = 0 и x + y + z = 1 (рисунок ниже).

площадь области ограниченной линиями интеграл

Расставляя пределы интегрирования, получаем следующий повторный интеграл:

площадь области ограниченной линиями интеграл.

Вычисляем внутренний (правый) интеграл:

площадь области ограниченной линиями интеграл.

Вычисляем внешний (левый) интеграл от вычисленного только что внутреннего (правого):

площадь области ограниченной линиями интеграл

Вновь видим, что решение двойного интеграла — отрицательное число. За объём данного тела принимается модуль этого числа, то есть 1/6.

Видео:Вычислить двойной интеграл по области, ограниченной линиями ∫∫(5x+y)dxdy D: y=x^3, y=0, x=3.Скачать

Вычислить двойной интеграл по области, ограниченной линиями ∫∫(5x+y)dxdy   D: y=x^3, y=0, x=3.

Так что же такое двойной интеграл?

Мы уже знаем, что представляет собой область D. Пусть z = f(x, y) — некоторая функция двух переменных, определённая и ограниченная в этой области. Разобъём область D произвольно на n частей, не имеющих общих точек, с площадями площадь области ограниченной линиями интеграл. В каждой из этих частей выберем произвольную точку площадь области ограниченной линиями интеграли составим сумму

площадь области ограниченной линиями интеграл,

которую назовём интегральной суммой. Диаметром области D условимся называть наибольшее расстояние между граничными точками этой области. Учитывается также наибольший из диаметров частичных областей.

Определение. Если интегральная сумма при неограниченном возрастании числа n разбиений области D и стремлении наибольшего из диаметров частичных областей к нулю имеет предел, то этот предел называется двойным интегралом от функции f(x, y) по области D.

Если областью интегрирования является окружность или часть окружности, то двойной интеграл проще вычислить в полярных координатах. Обобщением понятия двойного интеграла для функции трёх переменных является тройной интеграл.

🌟 Видео

Вычисление площадей и объемов с помощью определённого интегралаСкачать

Вычисление площадей и объемов с помощью определённого интеграла

Найти площадь фигуры, ограниченной линиями. Пример 4.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 4.

Площади 12Скачать

Площади 12

Площадь фигуры, ограниченной линией, заданной параметрически. Площадь, ограниченная эллипсомСкачать

Площадь фигуры, ограниченной  линией, заданной параметрически. Площадь, ограниченная  эллипсом

Площадь фигуры, ограниченной линиямиСкачать

Площадь фигуры, ограниченной линиями

Найти площадь фигуры, ограниченной линиями. Пример 2.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 2.

11 класс, 21 урок, Определённый интегралСкачать

11 класс, 21 урок, Определённый интеграл
Поделиться или сохранить к себе: