- Расчет площади теплообменника
- Определение количества теплоты
- Определение коэффициента теплопередачи
- Методика расчета теплообменника (площади поверхности)
- Базовые понятия теплообмена для расчета теплообменников
- Расчет теплообменников и различные методы составления теплового баланса
- Механизмы теплопередачи в расчете теплообменников
- Конвекционный механизм передачи тепла: расчеты
- Коэффициент теплоотдачи в расчете теплообменников
- Расчет средней разности температур
- Расчет теплообменника пластинчатого
- Подробнее об исходных данных для расчета
- Получить консультацию
- Рассчитаем по параметрам
- Есть готовый расчет теплообменника?
- ОСТАВЬТЕ ЗАПРОС и наш специалист поможет подобрать оборудование
- Виды технического расчета теплообменного оборудования
- Тепловой расчет
- Конструктивный расчет
- Гидравлический расчет
- ОСТАВЬТЕ ЗАПРОС и наш специалист поможет подобрать оборудование
- Как проверить правильность расчета пластинчатого теплообменника?
- Пример расчета пластинчатого теплообменника
- Как рассчитать пластинчатый теплообменник (видео)
- 📸 Видео
Видео:Расчет теплообменного аппаратаСкачать
Расчет площади теплообменника
Главное условие стабильной, эффективной работы системы теплообмена — это подбор теплообменных агрегатов с учетом точного соответствия конкретным эксплуатационным и техническим требованиям. Ключевым фактором для такого подбора является расчет площади теплообменника.
Конечно, существуют определенные стандарты, с универсальными параметрами, по которым можно подобрать оборудование для своего объекта. Тем не менее, часто в этой сфере индивидуальный подход более чем оправдывает себя. Проведение измерений и расчетов по конкретным данным позволяет получить максимальную отдачу от системы теплообмена. Кроме того, подобные вычисления попросту необходимы, если речь идет о работе по техническому заданию со строго обозначенными параметрами.
Методика расчета теплообменника предполагает несколько этапов.
Видео:Как посчитать теплообменник лучше любого проектировщикаСкачать
Определение количества теплоты
Уравнение передачи тепла, используемое для установившихся единиц времени и процессов выглядит следующим образом:
В данном уравнении:
- К — значение коэффициента теплопередачи (выражается в Вт/(м2/К));
- tср — средняя разность температурных показателей между разными теплоносителями (величина может даваться как в градусах по Цельсию (0С), так и в кельвинах (К));
- F — значение площади поверхности, для которой происходит теплообмен (значение дается в м2).
Уравнение позволяет описать процесс, в ходе которого происходит передача теплоты между теплоносителями (от горячего — к холодному). Уравнение учитывает:
- отдачу тепла от теплоносителя (горячего) к стенке;
- параметры теплопроводности стенки;
- отдачу тепла от стенки к теплоносителю (холодному).
Видео:Расчет и выбор теплообменникаСкачать
Определение коэффициента теплопередачи
Для предварительных расчетов теплообменного оборудования и разного рода проверок применяют ориентировочные значения коэффициентов, стандартизированные для определенных категорий:
- коэффициенты теплопередачи для процесса конденсации паров воды — от 4000 до 15000 Вт/(м2К);
- коэффициенты теплопередачи для воды, движущейся по трубам — от 1200 до 5800 Вт/(м2К);
- коэффициенты теплопередачи от парообразного конденсата к воде — от 800 до 3500 Вт/(м2К).
Точный расчет коэффициента теплопередачи (К) производится по следующей формуле:
В данной формуле:
- α1 — коэффициент теплоотдачи для греющего теплоносителя (выражается в Вт/(м2К));
- α2 — коэффициент теплоотдачи для нагреваемого теплоносителя (выражается в Вт/(м2К));
- δст — параметр толщины стенок трубы (выражается в метрах);
- λст — коэффициент теплопроводности материала, использованного для трубы (выражается в Вт/(м*К)).
Такая формула дает «идеальный» результат, обычно несоответствующий на 100% реальному положению дел. Поэтому в формулу добавляется еще один параметр — Rзаг.
Это показатель термического сопротивления различных загрязнений, формирующихся на нагревающихся поверхностях трубы (т.е. обычной накипи и др.)
Формула для показателя загрязнения выглядит так:
В данной формуле:
- δ1 — толщина слоя отложений на внутренней стороне трубы (в метрах);
- δ2 — толщина слоя отложений на внешней стороне трубы (в метрах);
- λ1 и λ2 — значения коэффициентов теплопроводности для соответствующих слоев загрязнений (выражаются в Вт/(м*К)).
Видео:Как правильно подобрать пластинчатый теплообменник?Скачать
Методика расчета теплообменника (площади поверхности)
Итак, мы рассчитали такие параметры, как количество теплоты (Q) и коэффициент теплопередачи (K). Для окончательного вычисления дополнительно потребуется разность температур (tср) и коэффициент теплоотдачи.
Итоговая формула расчета теплообменника пластинчатого (площади теплопередающей поверхности) выглядит так:
В данной формуле:
- значения Q и K описаны выше;
- значение tср (средняя разность температур) получают по формуле (среднеарифметической либо среднелогарифмической);
- коэффициенты теплоотдачи получают двумя способами: либо с помощью эмпирических формул, либо через число Нуссельта (Nu) с использованием уравнений подобия.
Видео:16. Основы теплотехники. Теплообменные аппараты. Конструкция и расчёт теплообменников.Скачать
Базовые понятия теплообмена для расчета теплообменников
Когда проводится расчет теплообменников, используются базовые знания о законах теплообмена, открытые на сегодняшний день.
В частности используются такие понятия как удельная теплоемкость и теплосодержание (энтальпия), а также удельная теплота химических превращений (и фазовых превращений).
Под удельной теплоемкость понимается количество тепла, которое необходимо для нагрева одного килограмма вещества ровно на один градус. На основании данных о теплоемкости можно судить об интенсивности аккумулирования тепла.
При тепловых расчетах используются средняя теплоемкость, исчисляемую в заданном температурном интервале.
Под понятием удельной энтальпии понимается количество тепла, которое потребуется для нагрева одного килограмма от нуля до заданной температуры.
Под удельной теплотой химических превращений понимается то количество тепла, которое будет выделяться при химической трансформации одной единицы массы данного вещества.
Под удельной теплотой фазовых превращений понимается то количество тепла, которое будет поглощаться или выделяться при изменении агрегатного состояния единицы массы данного вещества.
Видео:Как рассчитать мощность пластинчатого теплообменника? Формула для расчёта.Скачать
Расчет теплообменников и различные методы составления теплового баланса
При расчете теплообменников могут использоваться внутренний и внешний методы составления теплового баланса. При внутреннем методе используются величины теплоемкостей. При внешнем методе используются величины удельных энтальпий.
При применении внутреннего метода тепловая нагрузка рассчитывается по разным формулам, в зависимости от характера протекания теплообменных процессов.
Если теплообмен происходит без каких-либо химических и фазовых превращений, а соответственно и без выделений или поглощений тепла.
Соответственно тепловая нагрузка рассчитывается по формуле
Если в процессе теплообмена происходит конденсация пара или испарение жидкости, протекают какие-либо химические реакции, то используется другая форму для вычисления теплового баланса.
При использовании внешнего метода расчет теплового баланса ведется на основании того, что в теплообменный аппарат за какую-то единицу времени поступает и выходит равное количество тепла.
Если при внутреннем методе используются данные о теплообменных процессах в самом агрегате, то при внешнем методе используются данные внешних показателей.
Для расчета теплового баланса по внешнему методу используется формула
.
Под Q1 подразумевается то количество тепла, которое поступает в агрегат и ходит из него за единицу времени.
Под подразумевается энтальпия веществ, которые входит в агрегат и выходят из него.
Можно также вычислить разность энтальпий для того, чтобы установить то количество тепла, которое было передано между разными средами. Для этого используется формула .
Если же в процессе теплообмена происходили какие-либо химические или фазовые превращения, используется формула.
Видео:Тепловой расчет теплообменника. Виды тепловых расчетов. Показатели для расчета теплообменника.Скачать
Механизмы теплопередачи в расчете теплообменников
Теплообмен осуществляется посредством трех основных видов теплопередачи. Это конвекция, теплопроводность и излучение.
При теплообменных процессах, которые протекают по принципам механизма теплопроводности передача тепла происходит как перенос энергии упругих колебаний молекул и атомов. Данная энергия переходит от одних атомов к другим в направлении уменьшения.
При проведении расчетов параметров передачи тепла по принципу теплопроводности используется закон Фурье:.
Для вычисления количества тепла используются данные о времени прохождения потока, площади поверхности, градиенте температуры, а также о коэффициенте теплопроводности. Под градиентом температуры понимается ее изменение в направлении теплопередачи на одну единицу длины.
Под коэффициентом теплопроводности понимается скорость теплообмена, то есть то количество тепла, которое проходит через одну единицу поверхности в единицу времени.
При любых тепловых расчетах учитывается, что самый большой коэффициент теплопроводности имеют металлы. Различные твердые тела имеют гораздо меньший коэффициент. А у жидкостей этот показатель, как правило, ниже, чем у любого из твердых тел.
При расчете теплообменников, где передача тепла от одной среды к другой идет через стенку, также используется уравнение Фурье для получения данных о количестве передаваемого тепла. Оно вычисляется как количество тепла, которое проходит через плоскость с бесконечно малой толщиной:
.
Если проинтегрировать показатели температурных изменений по толщине стенки, получится
Исход из этого получается, что температура внутри стенки падает по закону прямой линии.
Конвекционный механизм передачи тепла: расчеты
Еще один механизм передачи тепла – конвекция. Это передача тепла объемами среды посредством их взаимного перемещения. При этом передача тепла от среды к стенке и наоборот, от стенке к рабочей среде называется теплоотдачей. Чтобы определить количество тепла, которое передается, используется закон Ньютона
В данной формуле a — это коэффициент теплоотдачи. При турбулентном движении рабочей среды этот коэффициент зависит от многих дополнительных величин:
- физических параметров текучей среды, в частности теплоемкости, теплопроводности, плотности, вязкости;
- условий омывания газом или жидкостью теплоотдающей поверхности, в частности скорости текучей среды, ее направления;
- пространственных условий, которые ограничивают поток (длина, диаметр, форма поверхности, ее шероховатости).
Следовательно, коэффициент теплоотдачи — функция многих величин, что показано в формуле
Метод анализа размерностей позволяет вывести функциональную связь критериев подобия, которые характеризуют теплоотдачу при турбулентном характере движения потока в гладких, прямых и длинных трубах.
Это вычисляется по формуле
.
Коэффициент теплоотдачи в расчете теплообменников
В химической технологии нередко встречаются случаи обмена тепловой энергией между двумя текучими средами через разделяющую стенку. Теплообменный процесс проходит три стадии. Тепловой поток для установившегося процесса остается неизменным.
Проводится расчет теплового потока, проходящего от первой рабочей среды к стенке, затем через стенку теплопередающей поверхности и затем от стенки ко второй рабочей среде.
Соответственно для проведения расчетов используется три формулы:
В результате совместного решения уравнений получаем
Величина
и есть коэффициент теплопередачи.
Расчет средней разности температур
Когда при помощи теплового баланса определено необходимое количество тепла, необходимо провести расчет поверхности теплообмена (F).
При расчете необходимой теплообменной поверхности используется то же уравнение, что и при предыдущих расчетах:
В большинстве случаев температура рабочих сред будет меняться в процессе протекания теплообменных процессов. Значит вдоль теплообменной поверхности будет меняться разность температур. Поэтому проводится расчет средней разности температур. А в связи с тем, что изменение температур не линейно, рассчитывают логарифмическую разность
. В отличие от прямоточного потока, при противоточном движении рабочих сред необходимая площадь теплообменной поверхности должна быть меньше. Если в одном и том же ходу теплообменника используется и прямоточный, и противоточный потоки, разность температур определяется, исходя из соотношения
.
Видео:Расчет теплообменного аппаратаСкачать
Расчет теплообменника пластинчатого
Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.
Данные теплообменника, которые нужны для технического расчета:
- тип среды (пример вода-вода, пар-вода, масло-вода и др.)
- тепловая нагрузка (Гкал/ч) или мощность (кВт)
- массовый расход среды (т / ч) — если не известна тепловая нагрузка
- температура среды на входе в теплообменник °С (по горячей и холодной стороне)
- температура среды на выходе из теплообменника °С (по горячей и холодной стороне)
Для расчета данных также понадобятся:
- из технических условий (ТУ), которые выдает теплоснабжающая организация
- из договора с теплоснабжающей организацией
- из технического задания (ТЗ) от гл. инженера, технолога
Видео:Расчет кожухотрубного теплообменникаСкачать
Подробнее об исходных данных для расчета
- Температура на входе и выходе обоих контуров.
Для примера рассмотри котел, в котором максимальное значение входной температуры – 55°С, а LMTD равен 10 градусам. Так, чем больше эта разница, тем дешевле и меньше в размерах теплообменник. - Максимально допустимая рабочая температура, давление среды.
Чем хуже параметры, тем ниже цена. Параметры и стоимость оборудования определяют данные проекта. - Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
Проще говоря – это пропускная способность оборудования. Очень часто может быть указан всего один параметр – объем расходов воды, который предусмотрен отдельной надписью на гидравлическом насосе. Измеряют его в кубических метрах в час, или в литрах в минуту.
Умножив объем пропускной способности на плотность, можно высчитать общий массовый расход. Обычно плотность рабочей среды изменяется в зависимости от температуры воды. Показатель для холодной воды из центральной системы равен 0.99913. - Тепловая мощность (Р, кВт).
Тепловая нагрузка – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы (если нам известны все параметры, что были выше):
P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 — t2). - Дополнительные характеристики.
- для выбора материала пластин стоит узнать вязкость и вид рабочей среды;
- средний температурный напор LMTD (рассчитывается по формуле ΔT1 — ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) — T4(выход горячего контура)
и ΔT2 = T2 (вход холодного контура) — T3 (выход холодного контура); - уровень загрязненности среды (R). Его редко учитывают, так как данный параметр нужен только в определенных случаях. К примеру: система центрального теплоснабжения не требует данный параметр.
Подбор и расчет стоимости теплообменника удобным для вас способом
Получить консультацию
Рассчитаем по параметрам
Делаем расчёт точно и профессионально, без всяких манипуляций
Есть готовый расчет теплообменника?
Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника
Откуда взять расчетные данные для ПТО?
Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).
Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.
Видео:Теплообменник для нагрева воды (площадь теплообмена 1,09 м2)Скачать
ОСТАВЬТЕ ЗАПРОС
и наш специалист поможет подобрать оборудование
Видео:Расчет теплообменника для среды подаваемой в маточникСкачать
Виды технического расчета теплообменного оборудования
Тепловой расчет
Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.
Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.
Давайте рассмотрим пример общего расчета.
В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.
Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],
Gг,х – расход горячего и холодного теплоносителей [кг/ч];
сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C];
При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:
r – теплота конденсации [Дж/кг];
сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
tк – температура конденсата на выходе из аппарата [°C].
Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:
Благодаря данной формуле определяем расход теплоносителя:
Формула для расхода, если нагрев идет паром:
G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C].
Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:
∆tср = (∆tб — ∆tм) / ln (∆tб/∆tм) где ∆tб, ∆tм – большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента
∆tср = ∆tср ·fпопр . Коэффициент теплопередачи может быть определен следующим образом:
δст – толщина стенки [мм];
λст – коэффициент теплопроводности материала стенки [Вт/м·град];
α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м 2 ·град];
Rзаг – коэффициент загрязнения стенки.
Конструктивный расчет
В данном виде расчета, существуют два подвида: расчет подробный и ориентировочный.
Расчет ориентировочный предназначен для определения поверхности теплообменника, размера его проходного сечения, поиска приближенных коэффициентов значения теплообмена. Последняя задача выполняется с помощью справочных материалов.
Ориентировочный расчет поверхности теплообмена производят благодаря следующим формулам:
F = Q/ k·∆tср [м 2 ]
Размер проходного сечения теплоносителей определяют из формулы:
S = G/(w·ρ) [м 2 ]
G – расход теплоносителя [кг/ч];
(w·ρ) – массовая скорость потока теплоносителя [кг/ м 2 ·с]. Для расчета скорость потока принимают исходя из типа теплоносителей:
Вид теплоносителя | Скорость потока, м/с | |||||||
Вязкие жидкости | 0,636 · (∆Pгр/∆Pнагр) 0,364 · (1000 – t нагр ср/ 1000 – tгр ср) Gгр, нагр – расход теплоносителей [кг/ч]; Если соотношение Хгр/Хнагр будет меньше двух, то выбираем компоновку симметрическую, если больше двух – несимметричную. Ниже представлена формула, по которой высчитываем количество каналов среды: Gнагр – расход теплоносителя [кг/ч]; Гидравлический расчетТехнологические потоки, проходя через теплообменное оборудование, теряют напор или давление потоков. Это связано с тем, что каждый аппарат имеет собственное гидравлическое сопротивление. Формула, используемая для нахождения гидравлического сопротивления, которое создают аппараты теплообмена: ∆pп – потери давления [Па]; Видео:Расчет/Моделирование кожухотрубчатого теплообменника нагрева битума с использованием Aspen EDRСкачать ОСТАВЬТЕ ЗАПРОС |
Горячая сторона | Холодная сторона | |
Т1/Т2 | 135/9 ℃ | 40/70 ℃ |
Расход | 100т/ч |
Вот так мы с вами нашли неизвестный нам ранее массовый расход среды холодного контура, имея лишь параметры горячего.
Видео:Вебинар на тему: "Подбор теплообменников в расчетной программе ООО "Завод Теплосила".Скачать
Как рассчитать пластинчатый теплообменник (видео)
📸 Видео
Вебинар на тему: "Общий обзор пластинчатых теплообменников производства ГК "Теплосила".Скачать
❄️Семинар 3. Расчет и проектирование пластинчато-ребристого теплообменного аппаратаСкачать
Как рассчитать радиаторы для домаСкачать
Основные сведения о конструкциях теплообменниковСкачать
Принцип работы пластинчатого теплообменника. Animation of the plate heat exchanger operation processСкачать