- Техническая механика
- Методы нахождения центра тяжести
- Метод симметрии
- Метод разбиения
- Метод отрицательных масс
- Практические методы определения центра тяжести тел
- Положение центра тяжести некоторых фигур
- Пример решения задачи на определение центра тяжести
- Тема 1.5. Центр тяжести тела
- Определение положения центра тяжести фигур и тел сложной формы
- Определение положения центра тяжести фигур и тел сложной формы
- Аналитический способ
- Экспериментальный способ
- Пример задачи:
- Пример задачи:
- Пример задачи:
- Пример задачи:
- 🎥 Видео
Видео:Определение центра тяжести сложной фигуры. Сопромат.Скачать
Техническая механика
Видео:Видеоурок 3. Определение центра тяжести.Скачать
Методы нахождения центра тяжести
Наиболее часто для нахождения центра тяжести тела или фигуры применяют следующие методы:
- метод симметрии;
- метод разбиения;
- метод отрицательных масс.
Рассмотрим приемы, применяемые в каждом из перечисленных методов.
Метод симметрии
Представим себе однородное тело, которое имеет плоскость симметрии. Выберем такую систему координат, чтобы оси x и z лежали в плоскости симметрии (см. рисунок 1) .
В этом случае каждой элементарной частице силой тяжести Gi с абсциссой yi = +a соответствует такая же элементарная частица с абсциссой yi = -a , тогда:
Отсюда вывод: если однородное тело имеет плоскость симметрии, то центр тяжести тела лежит в этой плоскости.
Аналогично можно доказать и следующие положения:
- Если однородное тело имеет ось симметрии, то центр тяжести тела лежит на этой оси;
- Если однородное тело имеет две оси симметрии, то центр тяжести тела находится в точке их пересечения;
- Центр тяжести однородного тела вращения лежит на оси вращения.
Метод разбиения
Этот метод заключается в том, что тело разбивают на наименьшее число частей, силы тяжести и положение центров тяжести которых известны, после чего применяют приведенные ранее формулы для определения общего центра тяжести тела.
Допустим, что мы разбили тело силой тяжести G на три части G’ , G» , G»’ , абсциссы центров тяжести этих частей x’C, x»C, x»’C известны.
Формула для определения абсциссы центра тяжести всего тела:
Перепишем ее в следующем виде:
Последнее равенство запишем для каждой из трех частей тела отдельно:
Сложив левые и правые части этих трех равенств, получим:
Но правая часть последнего равенства представляет собой произведение GxC , так как
Следовательно, xC = (G’x’C + G»x»C + G»’x»’C)/G , что и требовалось доказать.
Аналогично определяются координаты центра тяжести на координатных осях y и z :
Полученные формулы аналогичны формулам для определения координат цента тяжести, выведенные выше. Поэтому в исходные формулы можно подставлять не силы тяжести элементарных частиц Gi , а силы тяжести конечных частей; под координатами xi , yi , zi понимают координаты центров тяжести частей, на которые разбито тело.
Метод отрицательных масс
Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.
Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.
Практические методы определения центра тяжести тел
На практике для определения центра тяжести плоских тел сложной формы часто применяют метод подвешивания , который заключается в том, что плоское тело подвешивают на нити за какую-нибудь точку. Прочерчивают вдоль нити линию, и тело подвешивают за другую точку, не находящуюся на полученной линии.
Затем вновь проводят линию вдоль нити.
Точка пересечения двух линий и будет являться центром тяжести плоского тела.
Еще один способ определения центра тяжести, применяемый на практике, называется метод взвешивания . Этот метод часто применяется для определения центра тяжести крупных машин и изделий – автомобилей, самолетов, колесных тракторов и т. п., которые имеют сложную объемную форму и точечную опору на грунт.
Метод заключается в применении условий равновесия, исходя из того, что сумма моментов всех сил, действующих на неподвижное тело равна нулю.
Практически это осуществляется взвешиванием одной из опор машины (задние или передние колеса устанавливаются на весы), при этом показания весов, по сути, являются реакцией опоры, которая учитывается при составлении уравнения равновесия относительно второй точки опоры (находящейся вне весов).
По известной массе (соответственно – весу) тела, показанию весов в одной из точек опоры, и расстоянию между точками опоры можно определить расстояние от одной из точек опоры до плоскости, в которой расположен центр тяжести.
Чтобы найти подобным образом линию (ось), на которой расположен центр тяжести машины, необходимо произвести два взвешивания по принципу, изложенному выше для метода подвешивания (см. рис. 1а) .
Положение центра тяжести некоторых фигур
Прямоугольник. Так как прямоугольник имеет две оси симметрии, то центр тяжести его площади находится в точке пересечения этих осей, иначе говоря, в точке пересечения диагоналей прямоугольника.
Треугольник. Пусть дан треугольник АBD (см. рисунок 2) .
Разобьем его на элементарные (бесконечно узкие) полоски, параллельные стороне AD . Центр тяжести каждой полоски будет лежать на медиане Bd (т. е. в середине каждой полоски) , следовательно, на этой медиане будет лежать и центр тяжести всей площади треугольника. Разбив треугольник на элементарные полоски, параллельные стороне AB , увидим, что искомый центр тяжести лежит и на медиане aD .
Проделав аналогичное действие с треугольником относительно стороны ВD , получим тот же результат – центр тяжести находится на соответствующей медиане.
Следовательно, центр тяжести всей площади треугольника лежит на точке пересечения его медиан, поскольку эта точка является единственной общей точкой для всех трех медиан данной геометрической фигуры.
Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в соотношении 1:2 от основания. Следовательно, центр тяжести треугольника расположен на расстоянии одной трети высоты от каждого основания.
Дуга окружности. Возьмем дугу окружности АВ радиусом R с центральным углом 2α (см. рисунок 3) . Систему координат выберем так, чтобы начало координат было в центре окружности, а ось x делила дугу пополам, тогда yC = 0 вследствие симметрии дуги относительно оси x . Определим координату центра тяжести xC .
Разобьем дугу АВ на элементарные части li , одна из которых изображена на рисунке. Тогда, согласно сделанным выше выводам,
Дугу li вследствие малости примем за отрезок прямой. Из подобия треугольника ODiCi и элементарного треугольника S (на рисунке заштрихован) получим:
поскольку RΣΔyi = AB , а Σli = l – длина дуги АВ . Но АВ = 2R sinα , а l = 2Rα , следовательно,
При α = π/2 рад (полуокружность) , xC = 2R/π .
Круговой сектор. Возьмем сектор радиусом R с центральным углом 2α (см. рисунок 3а) . Проведем оси координат, как показано на рисунке (ось x направлена вдоль оси симметрии сектора), тогда yC = 0 .
Определим xC , для чего разобьем сектор на ряд элементарных секторов, каждый из которых из-за малости дуги li можно принять за равнобедренный треугольник с высотой R . Тогда центр тяжести каждого элементарного сектора будет находиться на дуге радиуса 2R/3 и задача определения центра тяжести сектора сводится к определению центра тяжести этой дуги.
Очевидно, что
При α = π/2 рад (полукруг) : xC = 4R/(3π) .
Пример решения задачи на определение центра тяжести
Задача:
Определить положение центра тяжести сечения, составленного из двутавра № 22 и швеллера № 20, как показано на рисунке 4 .
Решение.
Из курса инженерной графики известно, что номер проката соответствует наибольшему габаритному размеру его сечения, выраженного в сантиметрах.
Так как сечение, составленное из двутавра и швеллера, представляет собой фигуру, симметричную относительно оси y , то центр тяжести такого сечения лежит на этой оси, т. е. xC = 0 .
По справочнику определим площади и координаты центров тяжести двутавра 1 и швеллера 2.
Для двутаврового сечения: А1 = 15,2 см 2 ; y1 = 22/2 = 11 см.
Для швеллерного сечения: А2 = 12 см 2 ; y2 = 22 + d – z0 = 22 + 0,32 – 1,25 = 21,07 см ,
где d – толщина стенки швеллера; z0 – размер, определяющий положение центра тяжести швеллера.
Применим формулу для определения координаты центра тяжести всего сечения:
Видео:Определение центра тяжести сложной фигуры. СопроматСкачать
Тема 1.5. Центр тяжести тела
§1. Центр тяжести однородного тела.
Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.
Если разбить тело на элементарные части объемом ∆Vi , то на каждую его часть будет действовать сила притяжения ∆Pi, направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.1), и к ней применимы все выводы предыдущей главы.
Рис.1. Параллельная система сил
Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.
При определении центра тяжести полезны несколько теорем.
1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой
2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.
3) Если однородное тело имеет центр симметрии, то центр тяжести тела находится в этой точке.
§2. Способы определения координат центра тяжести.
1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.2), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.
Рис.2. Центр тяжести тел, имеющих ось симметрии
2. Разбиение. Тело разбивается на конечное число частей (рис.3), для каждой из которых положение центра тяжести и площадь известны.
Рис.3. Центр тяжести сплошной
сложной геометрической фигуры
— центр тяжести и площадь первой фигуры;
— центр тяжести и площадь второй фигуры;
— координата центра тяжести сплошной сложной геометрической фигуры по оси x;
— координата центра тяжести сплошной сложной геометрической фигуры по оси y;
3. Метод отрицательных площадей. Частный случай способа разбиения (рис.4). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S1 и площади вырезанной части S2 .
Рис.4. Центр тяжести сложной геометрической фигуры,
— центр тяжести и площадь первой фигуры;
— центр тяжести и площадь второй фигуры;
— координата центра тяжести сложной геометрической фигуры по оси x;
— координата центра тяжести сложной геометрической фигуры по оси y;
§3. Координаты центра тяжести некоторых простых фигур.
1. Центр тяжести треугольника. Центр тяжести треугольника лежит в точке пересечения его медиан (рис.5). Координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин: xc =1/3(x1+x2+x3) ; yc =1/3(y1+y2+y3).
Рис.5. Центр тяжести треугольника
2. Центр тяжести прямоугольника. Центр тяжести прямоугольника лежит в точке пересечения его диагоналей (рис.6). Координаты центра тяжести прямоугольника рассчитываются по формулам: xc =b/2 ; yc =h/2.
Рис. 6. Центр тяжести треугольника
3. Центр тяжести полукруга. Центр тяжести полукруга лежит на оси симметрии (рис.7). Координаты центра тяжести полукруга рассчитываются по формулам: xc =D/2 ; yc =4R/3π.
Рис. 7. Центр тяжести полукруга
4. Центр тяжести круга. Центр тяжести круга лежит в центре (рис.8). Координаты центра тяжести круга рассчитываются по формулам: xc =R ; yc =R.
Рис. 8. Центр тяжести круга
Вопросы для самопроверки:
— Что называется центром параллельных сил?
— Что называется центром тяжести тела?
— Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?
— Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?
— Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, квадрата, трапеции и половины круга?
— Как используются свойства симметрии при определении центров тяжести тел?
— В чем состоит сущность способа отрицательных площадей?
— Каким графическим построением можно найти центр тяжести треугольника?
— Запишите формулу, определяющую центр тяжести треугольника.
Видео:Определение координат центра тяжести сложной фигуры (плоского сечения)Скачать
Определение положения центра тяжести фигур и тел сложной формы
Определение положения центра тяжести фигур и тел сложной формы
Аналитический способ
Для определения положения центра тяжести фигур и тел сложной геометрической формы их мысленно разбивают на такие части простейшей формы (если, конечно, это возможно), для которых положения центров тяжести известны. Затем определяют положение центра тяжести всей фигуры или тела по формулам § 39, понимая в этих формулах под и объемы, площади и длины частей, на которые разбито данное тело, фигура или линия, а под и — координаты центров тяжести этих частей.
Если рассматриваемые фигуры или тела неоднородны, то, разделив их па однородные части, умножают входящие в формулы (43), (44) и (47) объемы, площади и длины этих частей на соответствующий каждой части удельный вес. Если в данном теле или фигуре имеются полости или отверстия, то для определения центра тяжести такого тела или фигуры пользуются теми же приемами и формулами, считая при этом объемы и площади вырезанных частей отрицательными.
В тех случаях, когда данное тело нельзя разбить на такие части, для которых было бы известно положение их центров тяжести, для вычисления координат центра тяжести тела приходится пользоваться методами интегрального исчисления.
Экспериментальный способ
Для определения центра тяжести неоднородных тел сложной формы существуют различные экспериментальные методы. Рассмотрим на примерах два из них.
I. Метод взвешивания. Для определения положения центра тяжести шатун (рис. 93) подвешиваем в точке и опираем точкой на платформу десятичных весов, так чтобы он занял горизонтальное положение. Сила давления шатуна на платформу, найденная путем взвешивания, оказалась равной по модулю . К находящемуся в равновесии шатуну приложены силы: сила тяжести шатуна, проходящая через его центр тяжести, вертикальная реакция платформы, проходящая через точку и равная по модулю силе давления шатуна на платформу, и сила натяжения нити .
Зная вес шатуна и расстояние между его точками и , теперь нетрудно найти и расстояние от точки до центра тяжести шатуна. Одним из уравнений равновесия шатуна будет:
- Метод подвешивания. Тело подвешивают на нити за какую-либо его точку (рис. 94, а) к неподвижной точке . После того как тело придет в равновесие, проводят вертикальную линию , составляющую продолжение направления нити . При равновесии центр тяжести тела должен находиться на одной
вертикали с неподвижной точкой и, следовательно, будет лежать на линии . Вновь подвесив тело к другой его точке (рис. 94,6), мы точно так же найдем, что его центр тяжести лежит на линии , являющейся продолжением направления нити . Точка пересечения линий и и будет являться центром тяжести тела. Способ подвешивания удобен для определения положения центра тяжести тонких пластинок.
Пример задачи:
Найти статические моменты относительно координатных осей площади листа и координаты его центра тяжести. Размеры листа (в сантиметрах) указаны на рис. 95.
Решение:
Разобьем данную площадь на три прямоугольника. Центр тяжести каждого из прямоугольников лежит на пересечении его диагоналей. Координаты этих центров, так же как и площади прямоугольников, легко определяются из чертежа.
По формулам (45) находим статические моменты площади данной фигуры
Определяем теперь по формулам (46) координаты центра тяжести площади фигуры:
Пример задачи:
Найти центр тяжести площади кругового сегмента радиуса , если (рис. 96).
Решение:
Искомый центр тяжести лежит на оси симметрии, проходящей через центр круга и середину дуги . Направим вдоль прямой ось . Начало координат возьмем в точке Будем рассматривать круговой сегмент как состоящий из двух фигуp: кругового сектора и треугольника , причем вторую площадь надо считать отрицательной.
Площадь кругового сектора
Абсцисса его центра тяжести
Абсцисса его центра тяжести
По формуле (44) определяем абсциссу центра тяжести данного кругового сегмента:
Пример задачи:
Тело состоит из деревянного цилиндра II, радиус которого высота и двух скрепленных с ним стальных шаров I и III с радиусами и (рис. 97). Определить положение центра тяжести этого тела, если удельный вес дерева и удельный вес стали .
Решение:
Искомый центр тяжести лежит на оси симметрии, проходящей через центры шаров и . Начало координат возьмем в центре большого шара и ось симметрии примем за ось . Разобьем тело на три части и составим для них таблицу объемов и координат (абсцисс) центров тяжести.
Для определения абсциссы центра тяжести всего неоднородного тела воспользуемся формулой (42):
Пример задачи:
Определить статические моменты относительно координатных осей и положение центра тяжести сечения (рис. 98, я), составленного из равнобокого уголка 100 X 100 X 10, швеллера №24 и полосы 190 X 10.
Решение:
Из таблиц нормального сортамента для прокатной стали ‘) выпишем следующие данные:
I. Равнобокий уголок (рис. 98,6), ГОСТ 8509-57. Профиль № 10. Ширина полки Толщина полки . Площадь поперечного сечения Расстояние центра тяжести от оснований полки .
II. Швеллер (рис. 98, в), ГОСТ 8509-57. Профиль № 24. Высота стенки Ширина полки Толщина стенки Площадь поперечного сечения . Расстояние центра тяжести от наружного края вертикальной стенки . (Швеллер имеет горизонтальную ось симметрии и, следовательно, его центр тяжести лежит на этой оси.)
III. Полосовая сталь, ГОСТ 103-57. Сечение — прямоугольник. Ширина полосы 190 мм. Толщина 10 мм. Площадь поперечного сечения
Нумеруем отдельные части сечения и на основании записанных выше данных проставляем соответствующие размеры (в см) на рис. 98, а. Оси координат выбираем так, как указано на этом рисунке.
Статический момент сечения относительно оси :
Статический момент сечения относительно оси :
Координаты центра тяжести сечения:
Эта теория взята с полного курса лекций на странице решения задач с подробными примерами по предмету теоретическая механика:
Возможно вам будут полезны эти дополнительные темы:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
🎥 Видео
Практическая №5 Определение центра тяжести сложной фигурыСкачать
Найдем площадь и центр тяжести через двойной интегралСкачать
Центр тяжести. ЭкспериментСкачать
Центр тяжестиСкачать
Определение центра тяжести сложной фигуры (2)Скачать
Как найти центр тяжести любой фигуры?Скачать
Определение центра тяжести сложных сечений. Фигуры из ГОСТ.Скачать
Найдите центр тяжестиСкачать
Урок 79. Центр масс тела и методы определения его положенияСкачать
Центр массСкачать
Определение центра тяжести плоской фигуры. Подробное объяснение. Сопромат для чайниковСкачать
Определение центра тяжестиСкачать
Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать
Центр тяжести фигуры. Способ 1Скачать
Определение центра тяжести и статистического момента плоской фигурыСкачать
Центр тяжести Решение задачСкачать