- Расчет теплообменника пластинчатого
- Подробнее об исходных данных для расчета
- Получить консультацию
- Рассчитаем по параметрам
- Есть готовый расчет теплообменника?
- ОСТАВЬТЕ ЗАПРОС и наш специалист поможет подобрать оборудование
- Виды технического расчета теплообменного оборудования
- Тепловой расчет
- Конструктивный расчет
- Гидравлический расчет
- ОСТАВЬТЕ ЗАПРОС и наш специалист поможет подобрать оборудование
- Как проверить правильность расчета пластинчатого теплообменника?
- Пример расчета пластинчатого теплообменника
- Как рассчитать пластинчатый теплообменник (видео)
- Расчет площади теплообменника
- Определение количества теплоты
- Определение коэффициента теплопередачи
- Методика расчета теплообменника (площади поверхности)
- Пластинчатые теплообменники
- Теплообменник и его виды
- Конструкция
- Основные виды пластинчатых теплообменников, их предназначение и преимущества:
- 1. Разборные (конструкция представляет собой пакет пластин и резиновые уплотнители):
- 2. Паяные (цельная конструкция со спаянными пластинами, без резиновых прокладок):
- 3. Сварные и полусварные (соединенные при помощи сварных швов):
- Пластинчатые теплообменники – технические характеристики
- Технические характеристики герметичных пластинчатых теплообменников MIT
- Технические характеристики сварных пластинчатых теплообменников MIT
- Отраслевое применение пластинчатых теплообменников
- Техническое Задание и Опросный лист по отраслям :
- Технические преимущества конструкции
- Принцип работы и устройство пластинчатого теплообменника
- Последствия неправильного подбора теплообменника
- Автоматика и подключение
- Варианты подключения пластинчатого теплообменника, их достоинства и недостатки.
- 1. Независимая одноступенчатая параллельная схема.
- 2. Двухступенчатая смешанная схема.
- 3. Двухступенчатая последовательная схема.
- Подбор пластинчатого теплообменника
- Пример расчета
- Преимущества заказа пластинчатого теплообменника у нас:
Видео:Принцип работы пластинчатого теплообменника. Animation of the plate heat exchanger operation processСкачать
Расчет теплообменника пластинчатого
Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.
Данные теплообменника, которые нужны для технического расчета:
- тип среды (пример вода-вода, пар-вода, масло-вода и др.)
- тепловая нагрузка (Гкал/ч) или мощность (кВт)
- массовый расход среды (т / ч) — если не известна тепловая нагрузка
- температура среды на входе в теплообменник °С (по горячей и холодной стороне)
- температура среды на выходе из теплообменника °С (по горячей и холодной стороне)
Для расчета данных также понадобятся:
- из технических условий (ТУ), которые выдает теплоснабжающая организация
- из договора с теплоснабжающей организацией
- из технического задания (ТЗ) от гл. инженера, технолога
Видео:Как посчитать теплообменник лучше любого проектировщикаСкачать
Подробнее об исходных данных для расчета
- Температура на входе и выходе обоих контуров.
Для примера рассмотри котел, в котором максимальное значение входной температуры – 55°С, а LMTD равен 10 градусам. Так, чем больше эта разница, тем дешевле и меньше в размерах теплообменник. - Максимально допустимая рабочая температура, давление среды.
Чем хуже параметры, тем ниже цена. Параметры и стоимость оборудования определяют данные проекта. - Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
Проще говоря – это пропускная способность оборудования. Очень часто может быть указан всего один параметр – объем расходов воды, который предусмотрен отдельной надписью на гидравлическом насосе. Измеряют его в кубических метрах в час, или в литрах в минуту.
Умножив объем пропускной способности на плотность, можно высчитать общий массовый расход. Обычно плотность рабочей среды изменяется в зависимости от температуры воды. Показатель для холодной воды из центральной системы равен 0.99913. - Тепловая мощность (Р, кВт).
Тепловая нагрузка – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы (если нам известны все параметры, что были выше):
P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 — t2). - Дополнительные характеристики.
- для выбора материала пластин стоит узнать вязкость и вид рабочей среды;
- средний температурный напор LMTD (рассчитывается по формуле ΔT1 — ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) — T4(выход горячего контура)
и ΔT2 = T2 (вход холодного контура) — T3 (выход холодного контура); - уровень загрязненности среды (R). Его редко учитывают, так как данный параметр нужен только в определенных случаях. К примеру: система центрального теплоснабжения не требует данный параметр.
Подбор и расчет стоимости теплообменника удобным для вас способом
Получить консультацию
Рассчитаем по параметрам
Делаем расчёт точно и профессионально, без всяких манипуляций
Есть готовый расчет теплообменника?
Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника
Откуда взять расчетные данные для ПТО?
Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).
Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.
Видео:Устройство и Принцип работы пластинчатого теплообменникаСкачать
ОСТАВЬТЕ ЗАПРОС
и наш специалист поможет подобрать оборудование
Видео:Вебинар на тему: "Подбор теплообменников в расчетной программе ООО "Завод Теплосила".Скачать
Виды технического расчета теплообменного оборудования
Тепловой расчет
Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.
Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.
Давайте рассмотрим пример общего расчета.
В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.
Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],
Gг,х – расход горячего и холодного теплоносителей [кг/ч];
сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C];
При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:
r – теплота конденсации [Дж/кг];
сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
tк – температура конденсата на выходе из аппарата [°C].
Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:
Благодаря данной формуле определяем расход теплоносителя:
Формула для расхода, если нагрев идет паром:
G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C].
Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:
∆tср = (∆tб — ∆tм) / ln (∆tб/∆tм) где ∆tб, ∆tм – большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента
∆tср = ∆tср ·fпопр . Коэффициент теплопередачи может быть определен следующим образом:
δст – толщина стенки [мм];
λст – коэффициент теплопроводности материала стенки [Вт/м·град];
α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м 2 ·град];
Rзаг – коэффициент загрязнения стенки.
Конструктивный расчет
В данном виде расчета, существуют два подвида: расчет подробный и ориентировочный.
Расчет ориентировочный предназначен для определения поверхности теплообменника, размера его проходного сечения, поиска приближенных коэффициентов значения теплообмена. Последняя задача выполняется с помощью справочных материалов.
Ориентировочный расчет поверхности теплообмена производят благодаря следующим формулам:
F = Q/ k·∆tср [м 2 ]
Размер проходного сечения теплоносителей определяют из формулы:
S = G/(w·ρ) [м 2 ]
G – расход теплоносителя [кг/ч];
(w·ρ) – массовая скорость потока теплоносителя [кг/ м 2 ·с]. Для расчета скорость потока принимают исходя из типа теплоносителей:
Вид теплоносителя | Скорость потока, м/с | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вязкие жидкости | 0,636 · (∆Pгр/∆Pнагр) 0,364 · (1000 – t нагр ср/ 1000 – tгр ср) Gгр, нагр – расход теплоносителей [кг/ч]; Если соотношение Хгр/Хнагр будет меньше двух, то выбираем компоновку симметрическую, если больше двух – несимметричную. Ниже представлена формула, по которой высчитываем количество каналов среды: Gнагр – расход теплоносителя [кг/ч]; Гидравлический расчетТехнологические потоки, проходя через теплообменное оборудование, теряют напор или давление потоков. Это связано с тем, что каждый аппарат имеет собственное гидравлическое сопротивление. Формула, используемая для нахождения гидравлического сопротивления, которое создают аппараты теплообмена: ∆pп – потери давления [Па]; Видео:Как правильно подобрать пластинчатый теплообменник?Скачать ОСТАВЬТЕ ЗАПРОС |
Горячая сторона | Холодная сторона | |
Т1/Т2 | 135/9 ℃ | 40/70 ℃ |
Расход | 100т/ч |
Вот так мы с вами нашли неизвестный нам ранее массовый расход среды холодного контура, имея лишь параметры горячего.
Видео:Основные сведения о конструкциях теплообменниковСкачать
Как рассчитать пластинчатый теплообменник (видео)
Видео:Классификация теплообменников по принципу действия.Скачать
Расчет площади теплообменника
Главное условие стабильной, эффективной работы системы теплообмена — это подбор теплообменных агрегатов с учетом точного соответствия конкретным эксплуатационным и техническим требованиям. Ключевым фактором для такого подбора является расчет площади теплообменника.
Конечно, существуют определенные стандарты, с универсальными параметрами, по которым можно подобрать оборудование для своего объекта. Тем не менее, часто в этой сфере индивидуальный подход более чем оправдывает себя. Проведение измерений и расчетов по конкретным данным позволяет получить максимальную отдачу от системы теплообмена. Кроме того, подобные вычисления попросту необходимы, если речь идет о работе по техническому заданию со строго обозначенными параметрами.
Методика расчета теплообменника предполагает несколько этапов.
Видео:Расчет теплообменного аппаратаСкачать
Определение количества теплоты
Уравнение передачи тепла, используемое для установившихся единиц времени и процессов выглядит следующим образом:
В данном уравнении:
- К — значение коэффициента теплопередачи (выражается в Вт/(м2/К));
- tср — средняя разность температурных показателей между разными теплоносителями (величина может даваться как в градусах по Цельсию (0С), так и в кельвинах (К));
- F — значение площади поверхности, для которой происходит теплообмен (значение дается в м2).
Уравнение позволяет описать процесс, в ходе которого происходит передача теплоты между теплоносителями (от горячего — к холодному). Уравнение учитывает:
- отдачу тепла от теплоносителя (горячего) к стенке;
- параметры теплопроводности стенки;
- отдачу тепла от стенки к теплоносителю (холодному).
Видео:Расчет и выбор теплообменникаСкачать
Определение коэффициента теплопередачи
Для предварительных расчетов теплообменного оборудования и разного рода проверок применяют ориентировочные значения коэффициентов, стандартизированные для определенных категорий:
- коэффициенты теплопередачи для процесса конденсации паров воды — от 4000 до 15000 Вт/(м2К);
- коэффициенты теплопередачи для воды, движущейся по трубам — от 1200 до 5800 Вт/(м2К);
- коэффициенты теплопередачи от парообразного конденсата к воде — от 800 до 3500 Вт/(м2К).
Точный расчет коэффициента теплопередачи (К) производится по следующей формуле:
В данной формуле:
- α1 — коэффициент теплоотдачи для греющего теплоносителя (выражается в Вт/(м2К));
- α2 — коэффициент теплоотдачи для нагреваемого теплоносителя (выражается в Вт/(м2К));
- δст — параметр толщины стенок трубы (выражается в метрах);
- λст — коэффициент теплопроводности материала, использованного для трубы (выражается в Вт/(м*К)).
Такая формула дает «идеальный» результат, обычно несоответствующий на 100% реальному положению дел. Поэтому в формулу добавляется еще один параметр — Rзаг.
Это показатель термического сопротивления различных загрязнений, формирующихся на нагревающихся поверхностях трубы (т.е. обычной накипи и др.)
Формула для показателя загрязнения выглядит так:
В данной формуле:
- δ1 — толщина слоя отложений на внутренней стороне трубы (в метрах);
- δ2 — толщина слоя отложений на внешней стороне трубы (в метрах);
- λ1 и λ2 — значения коэффициентов теплопроводности для соответствующих слоев загрязнений (выражаются в Вт/(м*К)).
Видео:Вебинар на тему: "Общий обзор пластинчатых теплообменников производства ГК "Теплосила".Скачать
Методика расчета теплообменника (площади поверхности)
Итак, мы рассчитали такие параметры, как количество теплоты (Q) и коэффициент теплопередачи (K). Для окончательного вычисления дополнительно потребуется разность температур (tср) и коэффициент теплоотдачи.
Итоговая формула расчета теплообменника пластинчатого (площади теплопередающей поверхности) выглядит так:
В данной формуле:
- значения Q и K описаны выше;
- значение tср (средняя разность температур) получают по формуле (среднеарифметической либо среднелогарифмической);
- коэффициенты теплоотдачи получают двумя способами: либо с помощью эмпирических формул, либо через число Нуссельта (Nu) с использованием уравнений подобия.
Видео:Структура пластинчатых теплообменников. Особенности и виды теплообменников.Скачать
Пластинчатые теплообменники
Видео:Теплообменники для нефтяной и газовой промышленности. Основные требования и применение.Скачать
Теплообменник и его виды
Теплообменник работает как аппарат-посредник между двумя средами, имеющими разную температуру. Существуют устройства регенеративного и рекуперативного типа, отличающиеся принципом работы.
В регенеративных теплообменниках предусмотрена одна рабочая поверхность, с которой по очереди контактируют жидкие среды. Рекуперативные аппараты имеют стенку из теплопроводного материала, которая отделяет движущиеся среды друг от друга. В промышленности получили распространение устройства именно такого типа.
Разновидности рекуперативных теплообменников:
- Пластинчатые – сборные модификации из соединенных модульных пластин с бесклеевыми термостойкими прокладками между ними (самый популярный вариант);
- Кожухотрубные – сварные или припаянные конструкции из труб, образующих решетку;
- Витые – оснащены концентрическими змеевиками, теплоноситель направляется по спиральной трубе и межтрубному пространству;
- Спиральные – металлические конструкции, изготавливаются из тонких металлических листов, свернутых в своеобразную спираль;
- С водяным или воздушным принципом работы.
Конструкция
К элементам конструкции пластинчатого теплообменника относятся:
- две плиты (фиксированная и прижимная);
- входные и выходные патрубки с соединениями разных типов;
- набор герметично соединенных пластин, направляющих, резьбовых метизов;
- подставка для установки в системе теплоснабжения.
Основной рабочий элемент конструкции – пластины из инертных материалов для передачи энергии между теплоносителями. Выполненные методом штамповки, они устойчивы к коррозии и воздействию любых агрессивных сред.
В собранном виде теплообменный аппарат состоит из плотно (герметично) примыкающих друг к другу пластин. На их стыке образуются каналы (щели). Толщина пластин варьируется от 0,4 до 1 мм. Они не отличаются по форме и выполнены из нержавеющей стали, реже из титана и других дорогих сплавов. Требования к материалу определяются задачами, для которых теплообменник предназначен.
В качестве изолирующего материала чаще всего задействуют каучук или полимерные композиты. При выборе следует учитывать жесткость условий эксплуатации, температурный диапазон, тип рабочей среды.
Рекомендуемые виды полимеров в зависимости от характеристик активных сред:
- вода и гликоль – EPDM;
- масляные и нефтесодержащие теплоносители – Nitril;
- высокотемпературная среда, пар – Viton.
Видео:Как рассчитать мощность пластинчатого теплообменника? Формула для расчёта.Скачать
Основные виды пластинчатых теплообменников, их предназначение и преимущества:
1. Разборные (конструкция представляет собой пакет пластин и резиновые уплотнители):
- низкие затраты на производство и монтаж;
- регулируемая, легко настраиваемая производительность;
- несложная дешевая эксплуатация, быстрый ремонт;
- безотказность, минимальные интервалы простоя;
- низкая энергоемкость;
- возможность переработки.
Сфера применения пластинчатого теплообменника с разборной конструкцией: системы отопления, бассейны, холодильное и климатическое оборудование, горячее водоснабжение, теплопункты.
2. Паяные (цельная конструкция со спаянными пластинами, без резиновых прокладок):
- компактность и низкая стоимость;
- оптимальное соотношение производительности и стоимости;
- быстрый и дешевый монтаж и сборка;
- надежность и безотказность.
Область применения паяных конструкций: холодильные аппараты, компрессоры и турбинные установки, кондиционеры и вентиляторы, промышленные установки разного назначения.
3. Сварные и полусварные (соединенные при помощи сварных швов):
- простая компактная конструкция без уплотняющих прокладок;
- регулируемый поток;
- устойчивость к действию агрессивных сред;
- максимальный диапазон температур;
- допустимое давление до 4 МПа, температура до 300 °С;
- простота монтажа;
- устойчивость к абразивным и агрессивным веществам;
- надежность и длительный рабочий ресурс.
Сфера применения сварных и полусварных агрегатов: пищевая, химическая и фармацевтическая отрасль, системы кондиционирования и охлаждения, в том числе в промышленности и медицине, работа тепловых насосов и систем горячего водоснабжения.
Видео:Принцип работы теплообменника с тремя средами. Двухступенчатый нагрев - охлаждение в теплообменникеСкачать
Пластинчатые теплообменники – технические характеристики
Пластинчатый теплообменник отличается довольно высокими показателями мощности. Режим температуры теплоносителя может достигать 180 градусов. Надежные пластинчатые теплообменники широко применяются в сферах отопления, энергетики, пищевой промышленности, климатическом, холодильном и вентиляционном оборудовании.
Основные характеристики агрегата будут различаться в зависимости от типа конструкции и модели:
Паяные | Разборные | Полусварные | Сварные | |
---|---|---|---|---|
Наивысший показатель температуры | 220°C | 200°C | 350°C | 900°C |
Наивысший показатель давления | 25 Бар | 25 Бар | 55 Бар | 100 Бар |
Наивысший показатель мощности | 5 Мвт | 75 Мвт | 75 Мвт | 100 Мвт |
КПД | 90% | 95% | 85% | 85% |
Гарантийный срок | 20 лет | 20 лет | 10-15 лет | 10-15 лет |
К стандартным техническим параметрам пластинчатых аппаратов относятся:
- Материал пластин – чаще всего листовая тонкая сталь AISI304 или AISI316, титан, сплавы 254 SMO, хастеллой (на основе никеля).
- Температурный максимум теплоносителя, на который рассчитаны пластины – 180°C.
- Предельное давление среды – 25 кгс/кв.см.
- Площадь поверхности теплообмена – 0,1-2100 кв.м.
- Количество пластин 7-10 штук и более, зависит от сферы применения.
При выборе конкретной модели целесообразно учитывать условия эксплуатации – для большей мощности требуется больше пластин. Их количество определяет производительность и полезное действие системы теплоподачи или охлаждения.
Технические характеристики герметичных пластинчатых теплообменников MIT
Тип | 504 | 513 | 514 | 521 | 522 | 617 |
---|---|---|---|---|---|---|
Ширина, мм | 200 | 360 | 360 | 460 | 460 | 337 |
Высота, мм | 480 | 930 | 930 | 1090 | 1090 | 1047 |
Глубина, мм | 200-400 | 250-1000 | 250-1000 | 250-1500 | 250-1500 | 250-1250 |
Диапазон гор.оси, мм | 70 | 140 | 140 | 210 | 210 | 150 |
Диапазон верт.оси, мм | 381 | 640 | 640 | 720 | 720 | 800 |
Макс. Раб.давл., бар | 20 | 20 | 20 | 20 | 20 | 20 |
Испытательное давл., бар | 25 | 25 | 25 | 25 | 25 | 25 |
Вес, кг | 23+0.25n | 98+0.75n | 98+0.75n | 225+1.1n | 225+1.1n | 116+0.91n |
Диаметр соединения | 1 1/4″ Резьбовое | 2″ Резьбовое или фальцевое | 2″ Резьбовое или фальцевое | 4″ Фальцевое | 4″ Фальцевое | 2 1/2″ Резьбовое или фальцевое |
Более подробную информацию по техническим характеристикам можно узнать в этом каталоге
Технические характеристики сварных пластинчатых теплообменников MIT
Тип | ВЗ-012 | ВЗ-014 | ВЗ-020 | ВЗ-027 | ВЗ-030 |
---|---|---|---|---|---|
Ширина, мм | 72 | 77 | 72 | 111 | 95 |
Высота, мм | 186 | 207 | 314 | 311 | 325 |
Глубина, (мин-макс) | 7+2.3n | 7+2.3n | 7+2.3n | 9+2.4n | 9+1.5n |
Диапазон гор.оси, мм | 40 | 42 | 42 | 50 | 39 |
Диапазон верт.оси, мм | 154 | 172 | 278 | 250 | 269 |
Макс. Раб.давл., бар | 30 | 30 | 30 | 30 | 30 |
Испытательное давл., бар | 45 | 45 | 45 | 45 | 45 |
Вес, кг | 0.6+0.044n | 0.7+0.06n | 1.1+0.09n | 1.2+0.013n | 1+0.09n |
Более подробную информацию по техническим характеристикам можно узнать в этом каталоге
Отраслевое применение пластинчатых теплообменников
На коммунальных объектах
Пластинчатые теплообменники помогают решать широкий спектр задач: подогревать воду для горячего водоснабжения, бойлеров и бассейнов, систем вентиляции и теплых полов. Их часто задействуют в составе независимого контура отопительной системы, питающейся от ТЭЦ или ЦТП. При этом температура не должна превышать 180 °C, давление – 16 кПа.
В пищевой промышленности
Теплообменники как элемент охладительного, испарительного и пастеризующего оборудования незаменимы в производстве молочных продуктов, сахара, растительных масел, пива, спирта. Самые востребованные в пищевой промышленности модификации – разборные и паяные.
Металлургия и судостроение
Многие технологические процессы в металлургии связаны с сильным нагреванием конструкций и агрегатов. Теплообменники охлаждают оборудование и рабочие среды, смазку в гидравлике и травильные растворы. В судостроении теплообменники применяют для охлаждения двигателя, в составе отопительной системы и ГВС.
Теплообменники необходимы, чтобы охлаждать горячие вещества и подогревать жидкости. Они входят в состав сетевых комплексов, систем подготовки воды и аппаратов низкого давления. В нефтегазовом производстве востребованы титановые конструкции с листом до 0,7 мм и уплотнителем из полимеров NBR или «Витон».
Техническое Задание и Опросный лист по отраслям :
- ТЗ расчета теплообменника для холодильной промышленности;
- ТЗ расчета теплообменника для энергетики и нефтегаза;
- ТЗ расчета теплообменника для теплоснабжения и ЖКХ;
- ТЗ расчета теплообменника для перерабатывающей промышленности;
- ТЗ расчета теплообменника для морского применения;
- ТЗ расчета теплообменника для фармацевтики;
- ТЗ расчета теплообменника для машиностроения и металлургии;
Технические преимущества конструкции
Если сравнивать технические параметры с кожухотрубными моделями, можно выделить следующие особенности разборных пластинчатых конструкций:
- Повышенный индекс теплопередачи (3-5 вместо 1);
- Допустимая разность температур рабочих сред всего 1-2% (в кожухотрубных конструкциях 5-10 градусов);
- Есть возможность произвольно менять площадь поверхности, просто добавляя и убирая пластины;
- При сборке не требуется сварка и вальцовка за счет разборной конструкции;
- Более простое обслуживание, осмотр, диагностика неполадок, удобный доступ к внутренним элементам, замена и промывка пластин;
- В 8 раз меньше затраты времени на разборку (15 минут вместо 2 часов);
- Простая и оперативная замена уплотнителей (клей не используется);
- Моментальное обнаружение течи без разборки устройства;
- Неподверженность коррозии и нечувствительность к вибрациям;
- Ресурс безотказной работы до капитального ремонта 20 лет (кожухотрубные модели требуют ремонта через 5-10 лет);
- Пластинчатые агрегаты выигрывают в весе и размерах;
- Не требуется теплоизоляция и специальный фундамент.
Видео:Теплообменные процессы. Часть 1. Уровень: начальный.Скачать
Принцип работы и устройство пластинчатого теплообменника
В каждой из пластин для теплоносителя и уплотнения предусмотрено по два отверстия:
- для подведения и отведения разогретого теплоносителя;
- для герметичного соединения пластин и изоляции теплоносителей за счет компактных уплотнителей.
Характерная особенность и преимущество пластинчатого теплообменника в том, что движение теплоносителя сопровождается завихрениями потока, что резко усиливает обмен тепловой энергией. Сопротивление при этом минимальное, что сокращает образование накипи. За счет многократного и интенсивного теплового обмена эффективность работы и КПД пластинчатого теплообменника одни из самых высоких.
Последствия неправильного подбора теплообменника
Для длительной безотказной эксплуатации важно выбрать модель, которая будет оптимальной для конкретных сред, температурных режимов, мощности и периодичности нагрузки. Выбрать подходящий по всем критериям вариант может только специалист. Обращение к профессионалам гарантирует отсутствие поломок в течение всего срока службы устройства. Отпадает необходимость в частом сервисном обслуживании и ремонте. Правильный выбор системы исключает распространенную проблему стекловидной накипи, ведущую к поломкам устройства.
Автоматика и подключение
При монтаже оборудования важно учитывать, что теплообменник всегда работает как элемент системы. Он не используется в качестве самостоятельного аппарата. Вместе с теплообменником в системе задействовано следующее оборудование: обратные клапаны, запорная арматура (комплекс задвижек, заслонок), контрольно-измерительные аппараты – манометры, термометры, циркуляционные насосы и другие виды приборов и агрегатов.
Видео:Жидкостный теплообменник: виды и конструктивные особенности.Скачать
Варианты подключения пластинчатого теплообменника, их достоинства и недостатки.
1. Независимая одноступенчатая параллельная схема.
- Экономичная установка, экономия свободного пространства;
- Простота конструкции.
- Отсутствует подогрев холодного теплоносителя.
2. Двухступенчатая смешанная схема.
- За счет подогрева входящего теплоносителя обратным потоком эффективность увеличивается на 40%.
- При проектировании системы горячего водоснабжения нужно подключать сразу два теплообменника, что удорожает решение.
3. Двухступенчатая последовательная схема.
- Стабилизируется сетевая нагрузка, растет эффективность применения теплоносителя.
- Уменьшаются расходы на 60% в сравнении с параллельной схемой и на 20-25% в сравнении со смешанной.
- Невозможность 100% автоматизации.
Видео:Кожухотрубчатый (кожухотрубный) теплообменникСкачать
Подбор пластинчатого теплообменника
Чтобы правильно подобрать пластинчатый теплообменник, необходимо рассчитать его технические параметры.
За основу берутся следующие данные:
- — схема присоединения ГВС;
- — тепловая нагрузка (мощность);
- — данные о греющей среде:
- температура на входе (для зимы/ лета), в °С;
- температура на выходе (для зимы/ лета), в °С;
- расход среды (если нет данных по мощности), в куб. м/час;
- допустимые потери давления (атм.);
- — данные о нагреваемой среде:
- входная температура (зима/лето), в °С;
- выходная температура (зима/лето), в °С;
- расход среды (если нет данных по мощности), в куб. м/час;
- допустимые потери давления (в атм.);
- запас мощности (в %).
Пример расчета
Пластинчатые теплообменники относятся к индивидуальному инженерному оборудованию, которое отдельно выбирается, настраивается и адаптируется под каждый объект. Укажите нам конкретные технические параметры по вашему проекту, и мы сразу рассчитаем, какое оборудование необходимо в вашем случае.
Чтобы оставить нам данные для расчетов, заполните онлайн форму заявки на сайте, напишите или позвоните. Ниже мы приводим список основных параметров, которые нужны, чтобы рассчитать пластинчатый теплообменник.
- Мощность (нагрузка) – количество тепловой энергии, необходимое для отопления и горячего водоснабжения объекта (измеряется в Гкал/час, ккал/час, кВт/час).
- Температурные графики – какую температуру дает и забирает обратно теплосеть, какой температурной отметки необходимо достичь.
Посмотреть эти характеристики можно в договоре с теплосетью. Там приведены технические условия и прописаны температурные графики, а также мощность, отведенная на отопление и горячее водоснабжение.
Основываясь на предоставленных вами данных, мы рассчитываем теплообменник и информируем вас о его стоимости и условиях поставки. Предоставляем подробный расчет, техническое описание требуемого аппарата с указанием габаритов и веса теплообменника пластинчатого.
Расчет от нашей компании производится с помощью профессионального программного обсечения
Видео:Как опознать правильный котел.Техникум Марка СолонинаСкачать
Преимущества заказа пластинчатого теплообменника у нас:
- Точный расчет теплообменника. Подбираем адаптированное оборудование под ваш проект.
- Гарантия объективной стоимости. Оптимизируя мощность оборудования, не завышаем цену.
- Оперативно обрабатываем заявки.
- Организуем изготовление, доставку и подключение пластинчатого теплообменника на выгодных условиях.
- Предлагаем оптовые цены за счет прямого сотрудничества с ведущими производителями.
- Несем полную ответственность за соблюдение сроков и качество техники.
Звоните, мы поможем с решением вашей задачи, рассчитаем и спроектируем аппарат, организуем доставку и установку. Предлагаем пластинчатые теплообменники российского производства с высоким КПД и выгодными техническими параметрами и характеристиками. В каталоге представлены приблизительные описания моделей, назначение и особенности эксплуатации теплообменников пластинчатого типа.