Видео:Понимание напряжений в балкахСкачать
Расчет сечений по разрушающим нагрузкам
Стадии напряженно-деформированного состояния нормальных сечений изгибаемых железобетонных элементов
Различают три характерные стадии напряженно-деформированного состояния нормальных сечений изгибаемых элементов.
Рис. 2.2. Опытные эпюры напряжений в нормальных
сечениях изгибаемого элемента:
а. в — с ненапряженной;
г, д — с предварительно напряженной арматурой
Стадия I (рис. 2.2, а). При малых нагрузках напряжения в бетоне и арматуре невелики, деформации носят упругий характер, эпюры нормальных напряжений в бетоне сжатой и растянутой зон — треугольные. С увеличением нагрузки в растянутом бетоне развиваются неупругие деформации, эпюра напряжений становится криволинейной, напряжения приближаются, а затем становятся равными пределу прочности бетона при растяжении (стадия 1а). Это положено в основу расчета по образованию трещин. При дальнейшем увеличении нагрузки в сечении образуются трещины.
Стадия II (рис. 2.2,6). После появления трещин, растягивающие усилия в сечении с трещиной воспринимаются арматурой и бетоном над трещиной (ниже нейтральной оси). Между трещинами бетон в нижней зоне работает на растяжение и напряжения в арматуре уменьшаются по мере удаления от трещины. В сжатой зоне бетона развиваются неупругие деформации, и эпюра нормальных напряжений искривляется. Считается, что стадия II заканчивается, когда в растянутой арматуре достигнут предел текучести. По этой стадии, называемой эксплуатационной, производится расчет прогибов и ширины раскрытия трещин конструкций.
Стадия III (рис. 2.2, в). Это стадия разрушения. Опыты показывают, что характер разрушения зависит главным образом от количества и вида арматуры, при этом возможны два случая:
· случай 1 — разрушение начинается в момент, когда напряжения в растянутой арматуре достигают физического или условного предела текучести; с развитием пластических деформаций в арматуре раскрываются трещины, напряжения в бетоне сжатой зоны возрастают, и, наконец, происходит его разрушение; разрушение сечения элемента носит пластический характер;
· случай 2 — разрушение элемента происходит вследствие раздавливания бетона сжатой зоны, при этом напряжения в растянутой арматуре могут не достигать предела текучести и ее прочностные свойства используются не полностью. Такое разрушение носит хрупкий характер и, как правило, имеет место в сечениях с избыточным содержанием арматуры. Стадия III положена в основу расчета прочности.
В предварительно напряженных элементах до приложения внешней нагрузки напрягаемая арматура обжимает все сечение или часть его (рис. 2.2, г). После приложения внешней нагрузки, сжимающие напряжения в нижней зоне уменьшаются и становятся равными нулю (рис. 2.2, д), При дальнейшем увеличении нагрузки возникают растягивающие напряжения и в предварительно напряженном элементе будут последовательно развиваться те же стадии напряженно-деформированного состояния, что и в элементе без предварительного напряжения (см. гл. 3).
Расчет сечений по допускаемым напряжениям
· Метод расчета по допускаемым напряжениям применялся в нашей стране до 1938 г. Согласно этому методу бетон рассматривался как упругий материал. В основу расчетных зависимостей были положены закон Гука, гипотеза плоских сечений. Вместо действительного железобетонного сечения в расчет вводилось приведенное бетонное сечение, в котором арматура заменялась эквивалентным по прочности количеством бетона. Сопротивлением бетона растянутой зоны пренебрегали. В результате расчета определялись напряжения в бетоне и арматуре от эксплуатационных нагрузок, которые не должны были превосходить допускаемые. Последние назначались как доля от предела прочности σadm=R/γ, где γ — обобщенный коэффициент запаса.
Однако на основании многочисленных опытов было установлено, что этот метод, не учитывающий пластических свойств железобетона, обладал рядом серьезных недостатков: не позволял определять действительные напряжения, находить разрушающую нагрузку и т. д.
Расчет сечений по разрушающим нагрузкам
В результате обширных исследований, проведенных советскими учеными (А. Ф. Лолейт, А. А. Гвоздев и др.), в начале 30-х годов был разработан метод, учитывающий упругопластические свойства железобетона, который был включен в нормы проектирования железобетонных конструкций в 1938 г.
· В основу метода расчета сечений по разрушающим нагрузкам была положена работа конструкций в III стадии напряженно-деформированного состояния, при этом предполагалось, что напряжения в бетоне и арматуре достигают предельных значений. В отличие от метода расчета по допускаемым напряжениям, где напряжения в бетоне и арматуре определялись по действующему в сечении внешнему усилию, в рассматриваемом методе по принятым напряжениям в сечении, установленным на основания экспериментов, определялось значение разрушающего усилия. Метод позволял назначать общий для всего сечения коэффициент запаса. Допускаемая нагрузка находилась путем деления разрушающей нагрузки на этот коэффициент. Метод более правильно отражал действительную работу сечений, подтверждался экспериментально и явился крупным шагом в развитии теории железобетона.
Общим недостатком обоих рассмотренных выше методов являлось использование единого коэффициента запаса, лишь весьма приближенно учитывающего многообразие факторов, влияющих на работу конструкции. Кроме того, метод расчета по разрушающим нагрузкам, позволяя достоверно определять прочность конструкции, не давал возможности оценить ее работу на стадиях, предшествующих разрушению, в частности при эксплуатационных нагрузках. Впрочем, до определенного периода практика и не ставила перед исследователями такой задачи. Это объясняется тем, что применялись сталь и бетон относительно низкой прочности, конструкции имели развитые сечения, прогибы и трещины в бетоне от эксплуатационных нагрузок были невелики и не препятствовали нормальной работе конструкций. С появлением бетона и арматуры более высокой прочности сечения уменьшались, снижалась и их жесткость, в результате чего прогибы конструкций от фактических нагрузок оказывались значительными, создавая в ряде случаев препятствия нормальной эксплуатации. Кроме того, более существенную роль стал играть фактор раскрытия трещин, вызывающий коррозию стали, к которой высокопрочная арматура особенно чувствительна. Последние два обстоятельства наряду с отмеченными выше недостатками существовавших методов потребовали дальнейшего совершенствования методики расчета железобетонных конструкций.
Видео:Определение центра тяжести сложных сечений. Фигуры из ГОСТ.Скачать
iSopromat.ru
Подборка формул для расчета элементов и конструкций на растяжение-сжатие и решения задач сопротивления материалов по расчету нормальных напряжений, деформаций и перемещения сечений стержней при продольном нагружении.
Обозначения в формулах:
Формула для расчета напряжений в поперечном сечении стержня
Расчет минимальной площади поперечного сечения бруса
Расчет допустимой величины внешней растягивающей/сжимающей силы (определение грузоподъемности)
Расчет перемещения сечений
Здесь: δ i — перемещение рассматриваемого сечения,
δ i-1 — перемещение предыдущего сечения,
Δ li — деформация участка между указанными сечениями.
Здесь α — угол отклонения сечения от поперечного.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:Основы Сопромата. Геометрические характеристики поперечного сеченияСкачать
Тема 6. Методы расчета железобетонных конструкций
Тема 6. МЕТОДЫ РАСЧЕТА ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
1. Стадии напряженно-деформированного состояния нормальных сечений при изгибе элемента
2. Расчет нормальных сечений по допускаемым напряжениям
3. Расчет нормальных сечений по разрушающим нагрузкам
1. Стадии напряженно-деформированного состояния нормальных сечений при изгибе элемента
Опыты показывают, что с увеличением внешней нагрузки в нормальном (перпендикулярном к продольной оси элемента) сечении железобетонной изгибаемой конструкции можно наблюдать три стадии напряженно-деформированного состояния (рис. 6.1).
Рис.6.1. Стадии напряженно-деформированного состояния изгибаемого элемента без предварительного напряжения: 1 — центральная ось; 2 — нейтральная ось; 3 — трещины
Стадия I. Соответствует начальным ступеням загружения конструкции до образования трещин в бетоне растянутой зоны (рис.6.1, а, б). На этой стадии арматура и бетон деформируются совместно благодаря имеющемуся между ними сцеплению. К концу стадии I эпюра напряжений в бетоне растянутой зоны вследствие проявления неупругих деформаций становится криволинейной. Ее наибольшая ордината достигает значения предельного сопротивления бетона растяжению Rbt ser. В сжатой зоне бетона эпюра напряжений имеет очертание, близкое к треугольнику (стадия 1а). Напряжения в растянутой арматуре на данной стадии можно установить из условия совместности деформаций арматуры (εs) и бетона (εbt), εS = εbt. Или, применяя закон Гука, можем записать , а т. к. на данной стадии деформирования элемента vbt = 0,5 (см. лекцию 3 коэффициент упругопластичной деформации ), получим σs = 2αRbt ser, где α = Es / Eb. При дальнейшем увеличении нагрузки в бетоне растянутой зоны образуются трещины. Наступает новое качественное состояние.
Стадия II. Характеризует состояние нормального сечения железобетонного элемента после образования трещин в растянутой зоне бетона (рис.6.1, в). В сечении с трещиной усилие в растянутой зоне воспринимается арматурой и участком растянутого бетона над трещиной. В сжатой зоне начинают проявляться неупругие деформации бетона, эпюра напряжений искривляется. При этом максимальные напряжения еще не достигают призменной прочности бетона (σb
💡 Видео
Какой вес выдержат болты разного класса прочностиСкачать
Основы Сопромата. Расчеты на прочность. Общая идеяСкачать
Определение усилий, напряжений и перемещений. СопроматСкачать
СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать
6. Определение характеристик сечения ( практический курс по сопромату )Скачать
Условная диаграмма напряжений. Пластичные и хрупкие материалыСкачать
Пример. Геометрические характеристики плоских сечений. Часть 1Скачать
Метод испытания на растяжениеСкачать
Как определить сечение провода.Скачать
Сопротивление материалов. Лекция: прямой изгиб балокСкачать
Сопромат. Устойчивость. Продольный изгиб. Подбор сечения.Скачать
Урок 210. Диаграмма растяжения. Запас прочностиСкачать
Практическое занятие "Геометрические характеристики плоских сечений"Скачать
Как определить сечение кабеля?Скачать
Подбор сечения двутавровой балки, работающей на изгибСкачать
Монолитное перекрытие. Расчет на изгибСкачать