рассчитать площадь крыла по массе

Видео:Подъёмная сила крыла ● 1Скачать

Подъёмная сила крыла ● 1

Рассчитать площадь крыла по массе

Каждому моделисту, после того как он научился строить модели по готовым чертежам, захочется конструировать свои собственные модели.

Для того чтобы проектировать сложные модели своей соб­ственной конструкции, надо изучить довольно трудную теорию полета, так называемую аэродинамику. Моделист, осо­бенно если он еще очень молод, не сумеет разобраться в этой теории; у него может получиться впечатление, что, пока он не подрастет, ему надо довольствоваться копированием чужих моделей.

Это не совсем верно. При проектировании моделей можно обойтись и без знания теории, если хорошо знать, какие при­мерно соотношения частей модели нужно выбирать, чтобы она получилась хорошей. При выборе соотношений мы используем тот опыт, который накопился у советских моделистов. Величины, приведенные ниже,’—это самые лучшие соотношения частей модели, разработанные теоретически и проверенные на практике. Усвоив эти данные и применяя их, можно избежать грубых ошибок. Добиться хороших полетных результатов будет легко, если читатель усвоил хорошо то, что рассказано о регулировке моделей.

Прежде всего нужно знать, что для различных типов моде­лей нужны и различные соотношения частей. Так, например, для сухопутных моделей, похожих на первую построенную нами, они одни, а для гидромоделей — другие. Поэтому там, где это необходимо, будем указывать, для каких типов моделей даются соотношения размеров.

Видео:расчет однолонжеронного свободнонесущего крыла на прочность. Часть 1. Построение эпюрСкачать

расчет однолонжеронного свободнонесущего крыла на прочность. Часть 1. Построение эпюр

Крылья

Основной размер, который надо выяснить прежде всего, — это размах крыльев. Этот размер считается основным, и по отношению к нему определяются главные размеры всех остальных частей. Главными мы их назвали потому, что для каждой детали достаточно найти главный размер и уже по отношению к нему определять все остальные.

Размах крыльев модели редко превосходит 1000 мм и редко бывает меньше 550—600 мм. Приняв размах модели за 100 про­центов, мы получим остальные соотношения.

Эти размеры будем считать главными для каждой части. Разберем подробнее все, что относится к крылу.

Видео:Расчёт и построение аэродинамических профилей на примере профиля N.A.C.A.Скачать

Расчёт и построение аэродинамических профилей на примере профиля N.A.C.A.

Форма крыльев.

На рис. 153 показаны пять форм крыла.

рассчитать площадь крыла по массе

Лучшей формой крыльев считается эллиптическая •— 5; хорошая форма трапецевидная с закругленными краями — 4 и 2 средняя по качествам — 3 и хуже всех — 1.

Вместе с тем из двух крыльев одинаковой площади лучшим будет относительно более длинное, то, у которого длина в большее число раз превосходит наибольшую ширину. В нашем примере из двух крыльев лучшим будет 2, а широкое и короткое крыло 1 много уступает ему.

Средним отношением размаха крыльев к наиболее широкому месту крыла надо считать 7. Для гидромоделей это отношение можно снижать до 6, но не ниже.

Говоря о форме и размерах крыльев, надо сказать о нервюрах. Вы уже знаете, что нервюры должны быть изогнутыми. Длина нервюры зависит от того, в каком месте она поставлена. Так, средняя нервюоа в крыле 4 будет самой длинной. Если же нервюру положить на стол, то место, удаленное от «носика» или начала нервюры на одну треть ее длины, окажется самым
высоким (рис. 154). Наибольшая высота нервюры над столом называется «стрелкой нервюры». Эта стрелка нервюры составляет от 1 до 1/18 длины нервюры. Больший прогиб (1) при­меняется для гидромоделей, где нужна большая подъемная сила, особенно в момент отрыва от воды, а меньший прогиб (1/18) — для моделей типа «утка» и других, летающих сравнительно быстро.

Видео:Программа предварительного расчёта летающих крыльевСкачать

Программа предварительного расчёта летающих крыльев

Стабилизатор

Стабилизатор по форме копирует крылья. Поэтому все, что сказано о крыльях, относится также и к стабилизатору, особенно для моделей типа «утка». Очень узкие стабилизаторы непрочны. Поэтому здесь отношение длины к ширине чаще всего бывает в пределах от 3 до 5.

Видео:Стреловидность крыла - Основы авиации #10Скачать

Стреловидность крыла - Основы авиации #10

Киль

Форма киля произвольна; чаще всего она приближается к треугольнику с закругленными краями. Важно лишь, чтобы по площади киль составлял несколько меньше половины ста­билизатора.

Видео:Самый аэродинамически эффективный самолет!Скачать

Самый аэродинамически эффективный самолет!

Винт

Лучше всего винты строить по готовым шаблонам. Поэтому расскажем, как, имея размеры шаблона для винта-прототипа, подсчитать их для винта другого диаметра. Это сделать очень просто: для этого все размеры винта-прототипа умножаются на отношение нового диаметра к старому. Так, например, если в каком-нибудь месте винта диаметром 350 мм указан размер 14 мм, то для винта диаметром в 500 мм этот размер должен быть равным: новый размер = (14Х500):v F 350= 20 мм.

Видео:Аэродинамика для всех - Часть 4 Аэродинамические характеристики, ПоляраСкачать

Аэродинамика для всех - Часть 4 Аэродинамические характеристики, Поляра

Резиномотор

Определить заранее, какой резиномотор потребуется для модели, можно довольно точно, но это требует знакомства с графиками или с довольно сложными формулами. Поэтому чаще всего просто подбирают количество нитей и длину резиномотора в пределе регулировки готовой модели. Для начала применяют резиномотор такой же по числу нитей и по длине (того же размера и типа), что и у других моделей. Во время регулировочных полетов увеличивают число нитей, если мотор оказывается слабым для данного винта. Окончательные данные мотора выясняются не сразу и очень зависят от типа и веса модели, размеров винта и многого другого.

Видео:Центр давления профиля крылаСкачать

Центр давления профиля крыла

Определение веса модели и ее частей

П рактика показывает, что, как в авиации вообще, так и в моделизме, громадное значение имеет правильный выбор веса модели. Слишком легкие модели летают так же плохо, как и очень тяжелые. Правда, редко кто из моделистов строит слишком легкие модели. Наоборот, перетяжеляют свои модели очень многие. Чаще всего это происходит тогда, когда моделист не знает границ веса модели. Молодые моделисты часто забывают об этом, между тем выдержать заданный вес и определить необходимый вес очень нетрудно.

Определение веса всей модели (полетный вес)

Для определения полетного веса модели поступают так.

Определяют по чертежу площадь крыла в квадратных деци­метрах1. Умножают число полученных квадратных дециметров площади крыла на одно из чисел: 7, 8, 9, 10, 11 и 12. Полученный результат и есть вес модели в граммах.

Приведенные нами числа получены из опыта работы моде­листов.

Обычно модели имеют самые разнообразные размеры, а поэтому и равный вес. Ясно, что сравнивать их просто по весу нельзя, так как модель с большим весом вместе с тем имеет и большие размеры.

Все знают, что железо тяжелее, чем пух или пробка, но если взять маленький кусочек железа и большой кусок пробки, может оказаться, что пробка тяжелее. Поэтому, чтобы сравнить вес двух различных веществ, их берут в равных количествах по объему. Вес в граммах одного кубического сантиметра всякого вещества называется удельным весом, т. е. весом единицы объема. При таком способе сравнения результат будет верный — железо окажется тяжелее пуха.

Для сравнения моделей удельный вес находят так: делят вес модели в граммах на площадь крыльев в дециметрах. Полу­ченное число и есть удельный вес модели. Значит удельный вес равен весу модели в граммах, поделенному на площадь крыльев (в квадратных дециметрах)

Этот удельный вес чаще равен 8—10 г на квадратный деци­метр. Зная вес модели и площадь ее крыльев, мы сумеем опре­делить удельный вес. Нетрудно сделать и обратное: зная пло­щадь крыльев и желаемый удельный вес, определить вес всей модели. Для этого надо только перемножить их.

Так у нашей первой модели площадь крыльев равна 5,8 дм2.

Тогда полетный вес желателен от 8 X 5,8 = 46,4 г до 10 X 5,8 = 58 г. Зная это еще до начала постройки модели, во время постройки можно добиться того, чтобы вес получился не больше расчетного. Для этого нужно иметь весы, можно само­дельные, с монетами в качестве разновеса. Монеты в 1, 2, 3 и 5 копеек весят соответственно 1, 2, 3 и 5 г.

Но это еще не все. Предположим, моделист построил модель и она оказалась на 15 г тяжелее, чем нужно. Что же в этом случае делать? Самое правильное — взвесить каждую часть модели в отдельности и уже по ней судить, не тяжела ли будет модель’. Если -известно, что крылья должны весить 10 г, а в процессе постройки оказалось, что они весят 11 —12 г, можно своевременно принять меры — заменить лонжероны более легкими или немного подстрогать все детали и снять таким образом лишний материал.

Советуем каждому, построившему первую модель, руковод­ствоваться теми советами, которые даны, особенно в той части, где приведены правила запуска и регулировки. При постройке моделей, для которых мы не дали рабочих чертежей, надо делать такие чертежи самому, используя для этого все приведенные данные. Разбираться в чертежах моделисту так же необходимо, как и уметь хорошо владеть инструментом. Вначале надо как можно точнее придерживаться всех указаний, приведенных в книге. Когда же накопится опыт, можно переходить к самостоятельной работе и вводить свои усовершенствования.

Видео:Площади фигур. Сохраняй и запоминай!#shortsСкачать

Площади фигур. Сохраняй и запоминай!#shorts

Определение геометрических размеров крыла

Видео:Урок 136. Подъемная сила крыла самолета (часть 2)Скачать

Урок 136. Подъемная сила крыла самолета (часть 2)

Выбор профиля крыла

Крыло является основной частью самолета, и от выбора его геометрических размеров в высшей степени зависят параметры всего СЛА.

Под геометрическими размерами крыла подразумевается его площадь S, размах l, удлинение рассчитать площадь крыла по массе, сужение рассчитать площадь крыла по массе, относительная толщина рассчитать площадь крыла по массеи кривизна профиля рассчитать площадь крыла по массе.

Влияние на аэродинамические характеристики крыла оказывает выбор его профиля. При этом необходимо учитывать: с одной стороны — назначение СЛА и предполагаемый диапазон скоростей его полета, с другой — прочностные свойства крыла и технологические возможности.

С точки зрения аэродинамики наиболее выгодным является профиль, имеющий высокое значение коэффициента подъемной силы Су на больших углах атаки крыла и высокое аэродинамическое качество К. на умеренных углах. Высокое значение Су позволяет при заданной площади крыла уменьшить скорости взлета и посадки самолета, а высокое качество обеспечивает максимальную скорость полета при заданной мощности двигателя. Мощность двигателя и качество самолета определяют и такую важную характеристику, как скороподъемность (вертикальная скорость набора высоты после взлета).

Наиболее широкое применение на СЛС находят хорошо зарекомендовавшие себя профили P-II .(рис. 1.2)

рассчитать площадь крыла по массе

Рис. 1.2 Поляра и координаты профиля P-II-18
и P-III (рис. 1.3)

рассчитать площадь крыла по массе

Рис. 1.3 Поляра и координаты профиля P-III-15

и другие с относительной толщиной 12. 20%.

В последнее время начали применяться планерные ламинаризированные профили с очень высоким аэродинамическим качеством. Однако это качество может быть достигнуто только при достаточно высокой чистоте поверхности крыла.

Если в техническом задании есть требование получения максимальной скорости при хороших взлетно-посадочных характеристиках самолета, то необходимо применить взлетно-посадочную механизацию крыла в виде закрылков, предкрылков, зависающих элеронов. Закрылки могут быть простыми, однощелевыми, многощелевыми, выдвижными.

Щитки на СЛА обычно не применяются из-за резкого ухудшения аэродинамического качества крыла при сравнительно небольшом увеличении коэффициента подъемной силы.

Аэродинамические характеристики механизированных крыльев с взлетно-посадочной механизацией приведены в табл. 1.3.

Таблица 1.3 Аэродинамические характекристики механизированных крыльев
рассчитать площадь крыла по массе

Следует иметь в виду, что указанные в табл. 1.3 приращения коэффициента подъемной силы будут иметь место в том случае, если механизация расположена по всему размаху крыла. Обычно она занимает только часть размаха, в этом случае приращение коэффициента максимальной подъемной силы и коэффициента сопротивления от механизации при оптимальных углах отклонения механизации приближенно можно определить по формулам:

рассчитать площадь крыла по массе(1.6)

рассчитать площадь крыла по массе

Для значительного увеличения коэффициента подъемной силы на режимах взлета и посадки, при сохранении достаточно высокого аэродинамического качества на крейсерских режимах, но только для скоростных СЛС, может быть рекомендован профиль крыла GA(W)-1, координаты и аэродинамические характеристики которого соответственно представлены в табл. 1.4. и на рис. 1.4.

Таблица 1.4 Координаты профиля GA(W)-1
рассчитать площадь крыла по массе

рассчитать площадь крыла по массе

Рис 1.4 Поляры профиля GA(W)-1 при различных углах отклонения закрылка

Достоинством данного профиля является и то, что он обеспечивает достаточно плавный срыв потока с убранной механизацией на закритических углах атаки.

При выборе механизации необходимо учитывать, что все виды механизации (кроме предкрылка): во-первых, ухудшают аэродинамическое качество СЛА, а значит, требуют большей мощности двигателя; во-вторых, приводят к усложнению конструкции и увеличению массы крыла; в-третьих, снижают надежность СЛА.

Поэтому, несмотря на значительный выигрыш в уменьшении площади крыла, во многих случаях применение механизации на СЛА оказывается нецелесообразным.

Относительная толщина профиля выбирается в пределах 14. 22%. Уменьшение относительной толщины ниже 14% нецелесообразно из-за уменьшения строительной высоты крыла, а значит, увеличения массы лонжеронов (прежде всего его полок). Кроме того, уменьшаются несущие свойства крыла, особенно на малых скоростях полета.

Крылья с относительной толщиной профиля более 18. 22% уступают по аэродинамическим характеристикам более тонким профилям из-за увеличения их лобового сопротивления. Причем это ухудшение характеристик не может быть компенсировано уменьшением веса крыла, так как при очень больших строительных высотах площадь поперечного сечения: полок лонжеронов определяется не из условия прочности, а из «конструктивных соображений», в то время как вес стенок растет.

Наиболее выгодными можно считать профили с переменной относительной толщиной — 18. 20% у корневой нервюры и 10. 14% у концевой нервюры консоли крыла. Однако изготовление такого крыла вызывает большие технологические трудности. Исключение составляют моноблочные крылья, в конструкции которых в качестве наполнителя используется пенопласт.

Видео:САХ крыла и центровка авиамоделиСкачать

САХ крыла и центровка авиамодели

Определение площади крыла

Площадь крыла является одним из наиболее характерных размеров самолета. Она определяет большинство размеров самолета, технических, весовых и геометрических параметров СЛА.

Уменьшение площади, а значит, и массы крыла, оказывает существенное влияние на уменьшение массы всего СЛА, но, как правило, требует большей мощности двигателя.

Минимально возможная площадь крыла определяется из условия обеспечения заданной скорости отрыва самолета при взлете.

Подъемную силу, создаваемую крылом в момент отрыва самолета, можно определить по формуле

рассчитать площадь крыла по массе

а так как подъемная сила в момент отрыва самолета примерно равна его весу, то, подставив в уравнение (1.8) вместо подъемной силы Y вес самолета Go и решив уравнение относительно S, получим

рассчитать площадь крыла по массе

Если крыло механизации не имеет или при взлете она не используется, то

рассчитать площадь крыла по массе

Коэффициент при Су mаx, равный 0,8, вводится с учетом того, что, во-первых, подъемная сила горизонтального оперения самолета, выполненного по нормальной схеме, направлена вниз и вычитается из подъемной силы крыла; во-вторых, необходим некоторый запас по углу атаки крыла для предотвращения срыва потока при случайном увеличении угла атаки вследствие вертикальных порывов или ошибок летчика.

Выбор площади крыла при заданном весе самолета однозначно определяет такой характерный параметр, как удельная нагрузка на крыло Go/S. Для большинства СЛА, выполненных по самолетной схеме, она находится в пределах 20. 50 кгс/м2. Чем больше значение отношения Go/S, тем труднее обеспечить заданные значения скоростей отрыва посадки самолета.

Для приближенных расчетов удельную нагрузку на крыло по заданной скорости отрыва можно выбрать по графику на рис. 1.6.

рассчитать площадь крыла по массе

Рис 1.6 Зависимость удельной нагрузки на крыло от заданной скорости отрыва самолета:
1 — без механизации, 2 — простой закрылок, 3 — выдвижной закрылок, 4 — выдвижной многощелевой закрылок

Выбор удлинения крыла

Важным безразмерным параметром крыла является его удлинение — отношение размаха крыла к рассчитать площадь крыла по массе

При выборе удлинения крыла следует учитывать, что значение именно этого параметра оказывает наиболее сильное влияние на его аэродинамическое качество. Чем больше удлинение крыла, тем выше аэродинамическое качество крыла, а значит, и СЛА в целом.

Аэродинамическое качество СЛА, в первом приближении, можно определить, воспользовавшись графиком, представленным на рис. 1. 7.

рассчитать площадь крыла по массе

Рис 1.7 К выбору удлинения крыла:
1 — рекордные планеры с ламинаризированными профилями, 2 — планеры и мотопланеры, 3 — сверхлегкие самолеты

Увеличение аэродинамического качества К, при сохранении неизменными других характеристик СЛА, позволяет снизить мощность, а значит, и массу силовой установки.

С другой стороны, увеличение удлинения крыла неизбежно вызывает увеличение массы крыла. Это объясняется тем, что при заданной площади S увеличение рассчитать площадь крыла по массевызывает уменьшение хорд, а значит, и строительных высот крыла.

Если СЛА предназначен для длительных полетов, то в расчет необходимо включать и изменение потребной массы топлива.

Оптимальным можно считать такое удлинение крыла, при котором суммарная масса крыла, силовой установки и потребного запаса топлива будет минимальной.

Часто СЛА с заданной максимальной скоростью горизонтального полета проектируются под имеющийся в наличии двигатель. В этом случае минимально необходимое удлинение min определяется, исходя из энергетических возможностей выбранного двигателя.

За 1 с двигатель может выполнить работу по перемещению СЛА, равную (Н*м)

рассчитать площадь крыла по массе

где рассчитать площадь крыла по массев — КПД винта на скорости набора высоты; для винта фиксированного шага его можно принять равным 0,55. 0,60 для однорежимного самолета (когда отношение Vmax/Voтр рассчитать площадь крыла по массе2) и 0,50. 0,55 для многорежимного самолета (когда отношение Vmax/Vотp рассчитать площадь крыла по массе2).

Если максимальная скорость горизонтального полета задана техническим заданием, то потребную тягу двигателя при этой скорости легко определить, воспользовавшись формулой

рассчитать площадь крыла по массе

Так как в установившемся горизонтальном полете потребная тяга двигателя Р равна сопротивлению самолета X, а подъемная сила Y равна весу СЛА Go, то

рассчитать площадь крыла по массе

Минимальное удлинение крыла, обеспечивающее заданное аэродинамическое качество, можно найти, воспользовавшись графиком, представленным на рис. 1.7, считая величину аэродинамического качества К известной и равной Кпотр.

Видео:Урок 135. Применения ур-ния Бернулли (ч.2). Подъемная сила крыла самолета (ч.1)Скачать

Урок 135. Применения ур-ния Бернулли (ч.2). Подъемная сила крыла самолета (ч.1)

Выбор других параметров, определяющих форму крыла в плане

Сужение крыла (отношение корневой хорды крыла к концевой) оказывает влияние на качество, вес и характеристики устойчивости CЛА, особенно поперечной. Увеличение сужения крыла, благодаря уменьшению индуктивного сопротивления, увеличивает его аэродинамическое качество. При увеличении сужения уменьшается и вес крыла. Однако чрезмерное увеличение сужения ухудшает срывные характеристики крыла (начало срыва смещается на конец крыла), а значит, ухудшает характеристики поперечной устойчивости.

Оптимальные значения сужения крыла рассчитать площадь крыла по массенаходятся в пределах 1,5. 2 для сверхлегких самолетов и 2. 4 для планеров любительской постройки.

Вместе с тем при выборе сужения крыла необходимо учитывать трудности технологического характера, связанные с изготовлением крыла. Так, если крыло имеет сужение, не равное единице, то:

  • для изготовления каждой нервюры консоли потребуется свой шаблон
  • задний лонжерон двухлонжеронного крыла либо будет иметь излом в плоскости симметрии самолета, либо криволинейные полки
  • при переменной относительной толщине крыла криволинейными будут и полки основного лонжерона

С учетом вышеизложенного для самолетов любительской постройки лучше: либо принимать сужение равным единице (рис. 1.8),

рассчитать площадь крыла по массе

Рис 1.8 Рекомендуемые формы крыла в плане

либо выполнять сужающимися только отдельные части крыла.

Стреловидность крыла СЛА, выполненного по нормальной схеме, по основному лонжерону целесообразно выполнять равной нулю. Стреловидность по передней кромке крыла при этом не будет превышать 2. 3°.

Большую стреловидность крыла могут иметь СЛА типа «летающее крыло», «бесхвостка» и другие СЛА оригинальных схем.

Отрицательную стреловидность крыла использовать нецелесообразно из-за большой трудности обеспечения достаточной жесткости крыла на кручение.

Видео:Элементарный расчет на прочность крыла легкого самолета на примере мотопланера «Коршун»Скачать

Элементарный расчет на прочность крыла легкого самолета на примере мотопланера «Коршун»

Выбор места расположения и геометрических размеров элеронов

Для увеличения эффективности элеронов их стремятся разнести как можно дальше от продольной оси самолета. Если элероны расположены на концах крыла (рис. 1.9),

рассчитать площадь крыла по массе

Рис 1.9 К выбору геометрических размеров элеронов

то их площадь в первом приближении можно определить на основании статистики по формуле

рассчитать площадь крыла по массе

где рассчитать площадь крыла по массеэл можно принять равной 0,05. 0,07 для маломаневренных и 0,07. 0,09 для маневренных СЛС. Однако, как будет показано ниже, относительная площадь элерона рассчитать площадь крыла по массеэл в полной мере эффективность элеронов характеризовать не может.

Эффективность элеронов удобнее оценивать, используя величину, называемую коэффициентом момента элеронов. Эту величину можно определить по формуле

рассчитать площадь крыла по массе

где Sэл.э — эффективная площадь элерона — площадь крыла (рис. 1.9), расположенная впереди элерона; aэл — расстояние между центрами «тяжести» эффективных площадей элерона; lэл -размах элерона; bэл — средняя хорда элерона.

На рис. 1.10 представлены графики зависимости коэффициента поперечного момента от угла отклонения элерона рассчитать площадь крыла по массеэл для четырех значений рассчитать площадь крыла по массе= рассчитать площадь крыла по массеэл/рассчитать площадь крыла по массе. Из графиков видно, что при рассчитать площадь крыла по массеэл >20° величина растет очень медленно, поэтому максимальные углы отклонения элерона больше 20. 25° выбирать нецелесообразно. Следует также учитывать, что увеличение относительной хорды элерона рассчитать площадь крыла по массе=bэл/b выше 0,20. 0,25 значительного прироста не дает, поэтому нецелесообразно.

рассчитать площадь крыла по массе

Рис 1.10 Зависимость коэффициента поперечного момента от угла отклонения элеронов

С учетом этого, приняв рассчитать площадь крыла по массе=0,25, формула (1.15) примет вид

рассчитать площадь крыла по массе

Если хорда крыла остается постоянной по всему его размаху, то есть рассчитать площадь крыла по массе=1, то формула (1.16) примет еще более простой вид:

рассчитать площадь крыла по массе

Малые значения коэффициента mx делают СЛА «вялым» при управлении по крену. Большие — делают управление чрезмерно чувствительным и приводят к быстрой утомляемости пилота. Оптимальными значениями можно считать:

  • 0,012. 0,018 — для неманевренных СЛС
  • 0,018. 0,024 — для маневренных СЛА

Указанные значения mx целесообразно увеличить на 0,003. 0,005 для СЛА с верхним расположением крыла или большими углами поперечного V крыла. Потребность увеличения может возникнуть и при возросшем моменте инерции СЛА вследствие разноса масс вдоль размаха крыла: установки двигателей, топливных баков или оборудования на крыле.

Из-за малых усилий на ручке управления самолетом (РУС) применять аэродинамическую компенсацию элеронов на СЛА нецелесообразно.

Чтобы не допустить флаттер, элероны крыльев больших удлинений должны иметь полную весовую компенсацию.

по материалам: П.И.Чумак, В.Ф Кривокрысенко «Расчет и проектирование СЛА»

Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Рассчитать площадь крыла по массе

рассчитать площадь крыла по массерассчитать площадь крыла по массерассчитать площадь крыла по массерассчитать площадь крыла по массерассчитать площадь крыла по массерассчитать площадь крыла по массерассчитать площадь крыла по массерассчитать площадь крыла по массе

Выбор основных параметров радиоуправляемой модели самолета
Обзоры — Теория и практика полетов
Автор: alldn

Если ты пока лишь начинаешь интересный и затратный путь в радиоуправляемый авиамоделизм, непременно решил строить модель самостоятельно и у тебя в голове периодически возникают вопросы – как выбирать профиль, как рассчитывать стабилизатор и какой ширины делать рули – то эта статья как раз для тебя!

Я вряд ли смогу построить твою модель вместо тебя и торжественно тебе ее вручить :-), но могу дать множество полезных советов и здравых идей относительно того, как и что делать для получения желанного положительного результата и главное — чего делать наверняка не следует.

Большая часть повествования будет относиться преимущественно к учебным моделям самолетов, которые обычно рекомендуют строить новичкам, хотя некоторые вещи (они будут особо отмечены) справедливы и для пилотажных моделей. Все повествования разбито на два вида информации – советы о том, как можно (надо) делать и советы о том, чего делать не надо.

Изготовление любой модели начинается с ее расчета. Расчет – не такая уж сложная вещь, тем более, что считать то надо всего ничего.

Подавляющее большинство авиамоделей проектируются и изготавливаются под конкретный двигатель или тип двигателей. Так как масса и мощность двигателя обычно связаны между собой, расчет модели может с одинаковым успехом производиться как по мощности двигателя, так и по его массе.

Даже если двигателя у тебя еще нет, а ты только собираешься купить его – узнать массу двигателя не составляет проблем (она всегда прописана в технических характеристиках на двигатель). К примеру, масса модельного ДВС кубатурой 2,5 миллилитра составляет от 200 до 250 грамм, масса 5 кубового ДВС – 300 грамм, масса 7,5 кубового – чуть больше 400 грамм. Если твоя модель будет электрическая – в качестве исходной массы для расчета бери массу электродвигателя вместе с ходовым аккумулятором.

Зная двигатель и его массу, можно сразу прикинуть полную массу будущей модели. Для 2,5 кубового двигателя массой 250 грамм масса учебной модели составит 700-800 грамм. Для 7,5 кубового ДВС массой 400 грамм масса модели составляет обычно чуть менее 2 Кг.

Теперь, зная массу будущей модели, находим ее основные геометрические размеры. В первую очередь – это размах и ширина крыла. Размах крыла связан с его шириной отношением, называемым «относительное удлинение крыла». У большинства моторных моделей удлинение имеет величину от 5 до 6 единиц. Т.е. если крыло имеет размах 1 метр, его ширина составляет 20 см. Чем больше удлинение крыла – тем лучше летает модель, но тем более высокие требования предъявляются к прочности конструкции крыла и маневренность модели падает. Именно поэтому на моторных моделях удлинение имеет сравнительно небольшое значение.

Размеры крыла увязывают с массой модели и желаемой нагрузкой на единицу несущей поверхности. Нагрузка на крыло обычно выражается в граммах на квадратный дециметр. Она определяет минимальную полетную скорость модели и ее стойкость к ветру. Чем меньше нагрузка – тем маневреннее модель и меньше ее минимальная полетная скорость, но тем сильнее ее сносит ветром. Для учебных, равно как и пилотажных моделей, нагрузку на крыло обычно стараются выбирать от 35 до 40 грамм на квадратный дециметр. Для небольших моделей с электрической тягой нормальной нагрузкой считается 20-25 грамм на дециметр квадратный.

Зная массу модели (предположим, у нас получилась масса 2 кг для 7,5 кубового ДВС) и желаемую нагрузку (пусть будет 40 гдм) находим размеры крыла. Делим 2000 грамм на 40 получаем 50 квадратных дециметров. Пусть удлинение крыла равняется 6. Тогда размах крыла равен корню из (50 умножить 6). Получаем 1,7 метра. А ширина равна 1,7/6 = 28 см.

Профиль. Для учебной модели выбираем простой плоско-выпуклый, типа Кларк-игрек. Он хорош тем, что просто в изготовлении – снизу крыло плоское, а значит, его можно собирать, положив на плоскую поверхность стола и собранное крыло будет достаточно ровным. Профиль такая штука, что заморачиваться с ним имеет смысл лишь на планерах, где аэродинамические качества имеют ключевое значение, и на спортивных моделях чемпионского уровня. Имеет значение толщина профиля.. Она обычно выражается в процентах – отношение длины профиля к его толщине в самом толстом месте. Для учебной модели толщину профиля желательно выбрать в районе 15%.

На моторных моделях, и в том числе пилотажных профиль имеет весьма второстепенное значение и от него требуется соблюдение лишь некоторых основных характеристик, зачастую – лишь технологичность изготовления. Но все же есть вещи, которых с профилем делать не стоит совершенно.

Ни в коем случае не следует делать профиль плоским, тем более на учебной модели. Модель, конечно, летать сможет. Но будет обладать совершенно ужасными срывными характеристиками, что будет приводить к тому, что при потере скорости при совершении виража или тем более какой либо фигуры пилотажа модель будет «сваливаться» — терять заданную траекторию полета, заваливаться на бок и сильно тяготеть к поверхности планеты. Это будет происходить оттого, что воздушный поток на малых скоростях и больших углах атаки будет срываться с острых кромок профиля и подъемная сила, удерживающая модель в воздухе, будет спонтанно исчезать. Со всеми вытекающими последствиями. Таким образом, профиль ни в коем случае не должен иметь острых кромок – обводы должны быть плавными и естественными, как у рыбы.

У пилотажных моделей применяют симметричные профили (одинаково выпуклые что сверху, что снизу) толщиной 15-20%. Это определяется условием достижения симметричности прямого и перевернутого полета, а так же эффективностью работы крыла на малых скоростях.

Стабилизатор.

У любой модели должен обладать определенными размерами и находиться на определенном расстоянии от центра тяжести модели. Площадь стабилизатора для обеспечения устойчивости должна составлять от 20 до 25% от площади крыла. У нас крыло имело площадь 50 квадратных дециметров, значит, стабилизатор должен иметь площадь от 10 до 12,5 квадратных дециметров. Удлинение стабилизатора, в отличие от крыла, может быть достаточно произвольным и не сильно влияет на летные свойства модели. Расстояние, на которое стабилизатор вынесен назад от центра тяжести (ЦТ) измеряется в единицах ширины крыла модели и обычно составляет от 2 до 2,5 значений ширины крыла. Ширина крыла у нас была, кажется, 28 см. Значит, стабилизатор будет вынесен от ЦТ на 70 см. Это расстояние от ЦТ до центра стабилизатора. ЦТ находиться в 30% ширины крыла, при условии, что крыло прямоугольной формы (для учебной модели обычно делают именно такие крылья, так как их делать проще), значит, от задней кромки крыла до центра стабилизатора мы получим 50 см.

Форму стабилизатора выбираем в меру своей испорченности. Можно примерно срисовать форму с фотографий других моделей, которых у тебя наверняка есть. Главное – чтобы площадь стабилизатора соответствовала расчетной. Небольшие ошибки приветствуются.

Профиль у стабилизатора на многих моделях, в том числе и пилотажных, обычно отсутствует. Стабилизатор представляет собой плоскую конструкцию, толщиной с толщину реек, из которых он изготовлен.

Аэродинамические рули.

Элероны на большинстве моделей идут вдоль всей заднее кромки крыла. Это определяет их простоту конструкции, возможность использования в качестве закрылков и работоспособность на малых полетных скоростях за счет обдува воздушным потоком от работающего двигателя.
На учебных моделях и моделях классического пилотажа площадь элеронов составляет 18 площади крыла. Так как крало у нас простое прямоугольное, отделяем от его ширины (28 см) 18 и получаем 3,5 см. Т.е. задняя часть крыла, полоска, шириной 3,5 см будет элеронами. Размеры элеронов можно увеличить до 16 ширины крыла, но тогда нужно будет чуть уменьшить их расходы (максимальные отклонения), особенно если модель учебная.

Элероны должны обладать высокой жесткостью на кручение. И еще они должны крепиться к крылу на шарнирах как минимум в трех точках, чтобы исключить прогиб.

Руль высоты обычно составляет 14 от площади стабилизатора. Киль модели обычно имеет площадь 12 площади стабилизатора, а руль направления на нем – 14 площади киля.

Типичные расходы (максимальные отклонения) всех рулей на учебной модели обычно составляет +-20 градусов.

Углы установки.

Стабилизатор и крыло большинства современных моделей крепятся в одной плоскости. Двигатель устанавливается на 1-2 градуса валом вправо и на 1-2 градуса валом вниз.
Если модель учебная, то крыло крепиться к верхней части фюзеляжа и угол выкоса двигателя вниз может достигать 3 градусов. Если модель без элеронов – то угол установки двигателя вниз можно увеличить до 5 градусов. Это повышает устойчивость модели по крену.

Ни в коем случае не рекомендуется устанавливать двигатель на учебной модели с нулевым выкосом или выкосом вверх. Это не только уменьшает устойчивость модели, но и увеличивает ее минимальную полетную скорость, что затрудняет успешное управление ею.

Расположение центра тяжести в определенном месте под крылом модели обеспечивается величиной выноса двигателя, как самого массивного элемента конструкции, вперед. Если не прибегать к методике расчета центра тяжести, которая основана на суммировании масс элементов, помноженных на их удаление от некой точки отсчета конструкции, а описывать ее мне лень и весьма небыстро, в первом приближении прикинуть величину выноса двигателя вперед можно примотав его (двигатель) скотчем к рейке и приделав к уже собранным остальным элементам конструкции, расположенных друг относительно друга так, как это будет на законченной модели. И подобрать такую длину рейки, когда цент тяжести находиться точно в 8,5 см (30% для крыла шириной 28 см) от переднего края крыла под ним.

В модели двигатель будет крепиться на мотораму, которая будет крепиться к моторному шпангоуту — прочной передней стенке фюзеляжа, сразу за которой будет топливный бак. Конструкцию топливной системы и принципы установки и настройки двигателя хорошо рассматривают другие статьи, напомню лишь, что крепление двигателя должно обеспечивать виброизоляцию двигателя от корпуса модели и в то же время быть жестким. Бак желательно тоже виброизолировать, иначе двигатель будет глохнуть чуть раньше, чем полностью израсходуется топливо.

Для учебной модели актуально такое крепление двигателя, когда глушитель расположен с левого или с правого боку от фюзеляжа. Это повышает вероятность сохранения целостности крепления глушителя к двигателю при аварийных встречах с планетой.

Собранная модель должна обладать необходимой прочностью и жесткостью. Перегрузки в обычном полете могут достигать 5g, а в экстремальном – до 10g.

Как бы ты там не делал свою модель, лучший способ убедиться в надежности – это проверить. Собираем модель до такого состояния, в котором она (предположительно) будет летать. Ставим бортовой аккумулятор, привинчиваем крыло, не забыв надеть на вал двигателя предварительно сбалансированный пропеллер (обе лопасти имеют одинаковую массу – чем одинаковее – тем лучше!). Пропеллер, кстати, должен располагаться на валу так, чтобы перед самым началом фазы сжатия ДВС он находился в горизонтальном положении. Чтобы не ломаться при посадках.

Итак, модель собрана и как бы готова к полету. Установи ее так, чтобы кончиками крыла она опиралась на два расставленных стула. Если сверху на модель положить груз, массой равный массе модели (2 Кг) и при этом крылья не начнут складываться и хрустеть – можно считать, что твоя модель способна выдерживать перегрузки до 4ж. Если не боишься – положи для верности сверху еще пару килограмм.

Стабилизатор. Не должен. Отваливаться, если взяв модель за фюзеляж, интенсивно помахать хвостом по воздуху.

Шасси, если таковое имеется, хотя для учебной модели оно зачастую излишне, так как мешает посадке в траву, должно так же выдерживать перегрузки. Представь себе, что твою модель подняли над землей на метр или около того, и плашмя бросили на твердый асфальт. Ну, как там шасси, не развалилось? Это я к тому, что даже у очень опытных пилотов посадка с плюханьем модель на асфальт с некоторой высоты является вполне штатной и нормальной. Далеко не всегда и не любую модель удается завести на полосу так, чтобы она плавно коснулась поверхности и из полета перешла в качение.

Еще крыло должно обладать жесткостью на кручение. Если взяв крыло за один из концов и попробовать покрутить им вокруг продольной оси крыла – происходить это должно с заметным усилием и минимальными отклонениями (не перестарайся! У нас нет цели раскрутить крыло, с дуру и сломать можно!).

Установке аппаратуры внутрь так же посвящено много статей, напомню лишь, что приемник должен располагаться позади аккумулятора, если смотреть по направлению полета модели, и ни в коем случае ни наоборот! При особо удачных ударах об землю бортовой аккумулятор часто разлетается на сильно помятые отдельные банки, нетрудно представить, что приемник от такого взаимодействия, если окажется на пути аккумулятора, просто взорвется, как куриное яйцо, которое пнул футболист! Приемник необходимо так же замотать в толстый слой поролона.

Обтягивать модель можно чем угодно, но поверхностный слой должен быть влаго- и малостойким. Выхлоп ДВС, даже если он летит, как тебе кажется, в бок от модели, за пару полетов непостижимым образом умудряется обгадить маслом всю поверхность модели, расположенную позади двигателя. Если модель обтянута бумагой – пропитай ее эпоксидным лаком. Или обтяни сверху канцелярским скотчем. А лучше – и то, и другое. Модель не чемпионская, за каждым граммом массы гнаться смысла нет, а вот повышать эксплуатационные характеристики весьма полезно для нервов.

По этой же причине, а еще потому, что модель учебная и может иногда больно стукаться об землю, крыло проще, быстрее и дешевле изготавливать из пенопласта. Естественно, с помещенным вовнутрь лонжероном необходимой прочности и обтянутое снаружи чем-либо. Такое крыло вырезается из цельного куска пенопласта при помощи терморезака.

Фюзеляж учебной модели проще делать в виде параллелепипеда. Куда уж проще – склеить вместе 4 вырезанных по размеру куска фанеры, чтобы получилась длинная труба квадратного сечения! По вкусу вклеиваем в нее шпангоуты (поперечные переборки), делаем необходимые отверстия. К задней части можно сделать сужение фюзеляжа.

Воздушный винт играет не последнюю роль в обеспечении летных характеристик модели. Любой ДВС позволяет устанавливать на него некоторый диапазон винтов, отличающихся шагом и диаметром. Как правило, с увеличением диаметра винта для заданного ДВС шаг винта уменьшается, и наоборот. Винт малого шага и большого диаметра обеспечивает хорошую тягу и малую полетную скорость. Учебная модель с таким винтом летит сравнительно медленно, позволяя неопытному пилоту успевать управляться с моделью. На пилотажных моделях такие винты полезны тем, что позволяют выполнять вертикальные фигуры, точно и быстро управлять скоростью полета модели (на малых оборотах винт малого шага работает как тормоз, не позволяя модели разгоняться). А высокая скорость для пилотажа не требуется. Винты малого диаметра и большого шага обеспечивают высокую полетную скорость. Такие винты позволяют модель противостоять довольно сильному ветру.

Окраска модели хотя и является исключительно делом испорченного вкуса владельца, имеет прямое отношение к возможностям модели в воздухе. Если модель будет плохо видно с земли, низ крыла не будет отличаться от верха, пилот вряд ли сможет результативно управлять ею стоя на земле!

Таким образом, окраска модели должна:
1 Быть хорошо видна издалека;
2 Низ модели должен отличаться от верха;
3 Если модель зеленого цвета, хорошенько подумай, затем еще раз подумай, а потом еще раз подумай, сколько времени тебе понадобиться на ее поиски, если она приземлиться в высокую траву на поле? Впрочем, если ты собрался летать исключительно зимой или вместо травы на вашем поле лишь голый асфальт, можно красить модель и в зеленый цвет.
Хорошо зарекомендовали себя следующие схемы окраски: красная сверху, черная или темно коричневая снизу, оранжевая и темно-серая, темно синяя и красная, желтая с черным. Различности низа верха можно так же достигнуть разницей рисунка сверху и снизу. Разница должна быть кардинальной – например, сверху крыло черное и желтое в центре, тогда снизу стоит сделать крыло желтым, с черной серединой. Желательно, если цветовая граница верха и низа будет проходить по передней кромке крыла. Это помогает различать положение модели, когда она летит строго на пилота (довольно частая ситуация). Как показывает практика, самой заметной окраской, различимой в любую погоду и все время года является ярко красная окраска без бликов. По возможности – флюресцентная.

Категорически не следует красить модель:
1 В светлые – белый, светло серый, светло коричневый или нежно голубой цвет. Их крайне плохо видно на фоне неба;
2 В блестящий (отражающий) серебристый или золотистый цвет – их ВООБЩЕ не видно на фоне неба, к тому же, они дают сильные блики на солнце и периодически ослепляют пилота, затрудняя визуальный контакт с моделью;

Даже если у вас отличное зрение и вы гоняете модель лишь на небольшом удалении от себя – максимально заметная окраска улучшает видимость модели и позволяет выполнять пилотирование более точно, что, естественно, имеет ключевое значение на соревнованиях. Ну и для души приятно! Ведь модель, прежде всего, должна нравиться владельцу!

🎬 Видео

Характеристики крыла-профиль, сужение, крутка.Скачать

Характеристики крыла-профиль, сужение, крутка.

Закон БернуллиСкачать

Закон Бернулли

Уроки Компас 3D. Объём и масса модели. Как узнать объём и массу модели в Компас 3D?.Скачать

Уроки Компас 3D. Объём и масса модели. Как узнать объём и массу модели в Компас 3D?.

Почему крылья на разных уровнях? Высокоплан, среднеплан, и низкопланСкачать

Почему крылья на разных уровнях? Высокоплан, среднеплан, и низкоплан

Центр тяжести. ЭкспериментСкачать

Центр тяжести. Эксперимент
Поделиться или сохранить к себе: