расход через площадь живого сечения

Видео:Что такое расход жидкости, способы измерения объемного и массового расходаСкачать

Что такое расход жидкости, способы измерения объемного и массового расхода

Расход через площадь живого сечения

Расходом воды называется объем воды (в кубических метрах), протекающей через площадь живого сечения в единицу времени (в 1 секунду): Q=F-Vср,

где Q —расход воды, F — площадь живого сечения и Vcp — средняя скорость течения.

Следовательно, для определения расхода воды нужно определить площадь живого сечения и среднюю скорость течения. Площадью живого сечения называется площадь поперечного сечения потока, ограниченная внизу руслом, а вверху поверхностью воды и расположенная перпендикулярно к направлению течения.

Для изучения расхода воды необходимо на реке выбрать определенный участок для гидрометрического створа. Створом вообще называется прямая линия, проведенная поперек реки, а створ, на котором определяют измерения расхода, называется гидрометрическим створом.

расход через площадь живого сечения

При выборе места для измерения воды надо учитывать следующие условия:

  1. русло реки на протяжении не менее четырехкратной ширины реки должно быть однообразным, прямолинейным;
  2. не должно быть никаких искусственных сооружений, влияющих на уровень воды и скорость течения;
  3. выбранный участок должен быть характерным для исследуемой реки.

Определение площади живого сечения заключается в том, что вдоль живого сечения определяют расстояния, а между промерными точками, а затем измеряют глубину: h1,h2. hn, называемые промерными вертикалями.

Расстояния между промерными точками устанавливаются в зависимости от ширины реки. При ширине реки до 100 м расстояния берут от 2 до 2,5 м. Вообще расстояния между промерными точками колеблются от 1/20 до 1/50 ширины реки.

Точка, от которой определяют положение промерных вертикалей, называется постоянным началом створа. Располагать промерные вертикали лучше на расстояниях, которые указаны в нижеприведенной таблице.

Видео:Закон БернуллиСкачать

Закон Бернулли

Расход через площадь живого сечения

Гидродинамика — раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы — круг (рис.3.1, б); живое сечение клапана — кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

расход через площадь живого сечения

Смоченный периметр χ («хи») — часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

расход через площадь живого сечения

Для круглой трубы

расход через площадь живого сечения

если угол в радианах, или

расход через площадь живого сечения

Расход потока Q — объем жидкости V, протекающей за единицу времени t через живое сечение ω.

расход через площадь живого сечения

Средняя скорость потока υ — скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

расход через площадь живого сечения

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R — отношение живого сечения к смоченному периметру

расход через площадь живого сечения

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока — трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.

расход через площадь живого сечения

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное — течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

расход через площадь живого сечения

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q1=Q2= const, откуда

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

расход через площадь живого сечения

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P, средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

расход через площадь живого сечения

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2. Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q.

Для измерения давления жидкости применяют пьезометры — тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту расход через площадь живого сечения. В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито. Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии.

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0, называемой плоскостью сравнения, будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода.

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

расход через площадь живого сечения

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

расход через площадь живого сечения

и прочитать так: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная.

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 — удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2;
расход через площадь живого сечения — удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
расход через площадь живого сечения — удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна.

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 — геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; расход через площадь живого сечения — пьезометрические высоты; расход через площадь живого сечения — скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

расход через площадь живого сечения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

расход через площадь живого сечения

Потерянная энергия или потерянный напор обозначаются расход через площадь живого сечения и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

расход через площадь живого сечения

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2.

Кроме этого в уравнении появились еще два коэффициента α1 и α2, которые называются коэффициентами Кориолиса и зависят от режима течения жидкости ( α = 2 для ламинарного режима, α = 1 для турбулентного режима ).

Потерянная высота расход через площадь живого сечения складывается из линейных потерь, вызванных силой трения между слоями жидкости, и потерь, вызванных местными сопротивлениями (изменениями конфигурации потока)

Для измерения скорости в точках потока широко используется работающая на принципе уравнения Бернулли трубка Пито (рис.3.7), загнутый конец которой направлен навстречу потоку. Пусть требуется измерить скорость жидкости в какой-то точке потока. Поместив конец трубки в указанную точку и составив уравнение Бернулли для сечения 1-1 и сечения, проходящего на уровне жидкости в трубке Пито получим

расход через площадь живого сечения

где Н — столб жидкости в трубке Пито.

расход через площадь живого сечения

Для измерения расхода жидкости в трубопроводах часто используют расходомер Вентури, действие которого основано так же на принципе уравнения Бернулли. Расходомер Вентури состоит из двух конических насадков с цилиндрической вставкой между ними (рис.3.7). Если в сечениях I-I и II-II поставить пьезометры, то разность уровней в них будет зависеть от расхода жидкости, протекающей по трубе.

Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений I-I и II-II:

расход через площадь живого сечения

расход через площадь живого сечения

расход через площадь живого сечения

расход через площадь живого сечения

Выражение, стоящее перед расход через площадь живого сечения, является постоянной величиной, носящей название постоянной водомера Вентури.

Из полученного уравнения видно, что h зависит от расхода Q. Часто эту зависимость строят в виде тарировочной кривой h от Q, которая имеет параболический характер.

Видео:Измерения на приточных и вытяжных вентиляционных отверстиях и вихревых диффузорах с testo 417Скачать

Измерения на приточных и вытяжных вентиляционных отверстиях и вихревых диффузорах с testo 417

Гидродинамика. Расход жидкости. Средняя скорость жидкости.

Расход потока Q (м 3 / с, литр / мин) находят из соотношения объема жидкости V, протекающая за единицу времени t сквозь живое сечение w. Из определения получаем:

Расход элементарной струйки определяют из соотношения объема жидкости dV, протекающего через живое сечение струйки за единицу времени. Из определения получаем формулу:

где uистинная скорость движения частиц жидкости;

dw -площадь сечения элементарной струйки.

Средняя скорость – отношение расхода к площади живого сечения:

Принято вычислять среднюю скорость, потому как скорость движения разных частиц жидкости будет различна. Так, к примеру, для круглой трубы, скорость по центру трубы будет принимать наибольшую величину, а у стенок трубы она будет вообще равняться нулю.

💡 Видео

Водные изыскания - Вычисление расхода воды аналитическим способомСкачать

Водные изыскания - Вычисление расхода воды аналитическим способом

Способы замера расхода воздуха депресии в горных выработках.Скачать

Способы замера расхода воздуха депресии в горных выработках.

Влияние коэффициента свободного сечения на показания скорости крыльчатки.Скачать

Влияние коэффициента свободного сечения на показания скорости крыльчатки.

Работы5 6 Измерение расхода с помощью диафрагмы. Определение потерь напора в цилиндрической трубеСкачать

Работы5 6 Измерение расхода с помощью диафрагмы. Определение потерь напора в цилиндрической трубе

ПРОТИВОДЫМНАЯ ВЕНТИЛЯЦИЯ| 📌 МЕТОДИКА ЗАМЕРАСкачать

ПРОТИВОДЫМНАЯ ВЕНТИЛЯЦИЯ| 📌 МЕТОДИКА ЗАМЕРА

Классификация водосливовСкачать

Классификация водосливов

Дистанционное практическое занятие по разделу "Гидродинамика".Скачать

Дистанционное практическое занятие по разделу "Гидродинамика".

Пожарная тактика. Как рассчитать расход из любого пожарного ствола при любом напореСкачать

Пожарная тактика. Как рассчитать расход из любого пожарного ствола при любом напоре

Котика ударило током, 10 т. ВольтСкачать

Котика ударило током, 10 т. Вольт

Практическая работа №5 "Гидравлический расчет каналов"Скачать

Практическая работа №5 "Гидравлический расчет каналов"

Расчет дымоудаления из коридоров. КВМ-Дым. Проектирование дымоудаления.Скачать

Расчет дымоудаления из коридоров. КВМ-Дым. Проектирование дымоудаления.

1 тема. Равномерное движение в открытых руслахСкачать

1 тема.  Равномерное движение в открытых руслах

Служба КИП и А. Диафрагма, расход занижен или отсутствуетСкачать

Служба КИП и А. Диафрагма, расход занижен или отсутствует

Гидравлически наивыгоднейшее сечение (гнс) каналаСкачать

Гидравлически наивыгоднейшее сечение (гнс) канала

Гидродинамика. Вторая лекция.Скачать

Гидродинамика. Вторая лекция.

Неравномерное движение воды в каналеСкачать

Неравномерное движение воды в канале

Равномерное движение воды в открытых руслахСкачать

Равномерное движение воды в открытых руслах
Поделиться или сохранить к себе: