- Расчет количества радиаторов отопления по площади и объему помещения
- Расчет по площади
- Методика расчета по объему помещения
- Корректировка результатов
- Стены и потолок
- Высота потолков
- Климатические условия
- Расчет количества секций радиаторов
- Зависимость от температурного режима системы отопления
- Расчет отопления по площади помещения
- Простейшие приемы расчета
- Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений
- Общие принципы и формула расчета
- Калькулятор расчета требуемой тепловой мощности отопления по помещениям
- Оценка степени утепленности элемента дома и требуемой толщины термоизоляции
- Общий принцип расчета
- Калькулятор оценки необходимости дополнительного утепления
- Видео: пример расчета системы отопления с помощью специальной прикладной программы
- Как рассчитывается тепловая нагрузка на систему отопления здания
- Способы определения нагрузки
- Для примера – проект одноэтажного дома 100 м²
- Считаем расход теплоты по квадратуре
- Вычисление тепловой нагрузки по объему комнат
- Расчетный алгоритм согласно СНиП
- Определяем теплопотери стен и крыши
- Деление пола на зоны
- Нагрев вентиляционного воздуха
- Окончательный расчет
- Как воспользоваться результатами вычислений
- 🌟 Видео
Видео:Как рассчитать радиаторы для домаСкачать
Расчет количества радиаторов отопления по площади и объему помещения
При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей.
Видео:Как посчитать теплопотери домаСкачать
Расчет по площади
Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.
При использовании данной методики нужно учесть несколько важных моментов:
- норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
- для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
- метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
- способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.
Видео:Простой расчет теплопотерь. Как оценить потребность в отоплении? / Длинная версия / Глеб ГринСкачать
Методика расчета по объему помещения
Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:
- Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
- В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).
Видео:Расчет мощности котла / Зависимость от объема помещенияСкачать
Корректировка результатов
Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.
В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.
Соотношение площади окон и пола в комнате:
- для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
- для окна с обычным двухкамерным стеклопакетом – 1,0;
- для рам с обычным двойным остеклением – 1,27.
Стены и потолок
Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.
Число наружных стен:
- нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
- одна наружная стена – 1,1;
- две – 1,2;
- три – 1,3.
- нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
- высокая степень теплоизоляции – 0,8;
- низкая – 1,27.
Учет типа вышерасположенного помещения:
- отапливаемая квартира – 0,8;
- отапливаемый чердак – 0,9;
- холодный чердак – 1,0.
Высота потолков
Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:
- 2,5 метра – коэффициент 0,9;
- 3,0 метра – 1,1;
- 3,5 метра – 1,3;
- 4,0 метра – 1,5;
- 4,5 метра – 1,7.
Климатические условия
Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.
Видео:Сколько секций радиатора надо на квадратный метр?Скачать
Расчет количества секций радиаторов
После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.
Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:
- для чугунных батарей примерная мощность одной секции составляет 160 Вт;
- для биметаллических – 180 Вт;
- для алюминиевых – 200 Вт.
Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.
Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.
Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.
Видео:Простой РАСЧЕТ МОЩНОСТИ РАДИАТОРА отопленияСкачать
Зависимость от температурного режима системы отопления
Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.
Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.
- Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
- Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
- Низкотемпературный: 55/45/20, тепловой напор – 30 °С.
Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.
Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.
Видео:Как рассчитать мощность радиаторов отопления и теплопотери дома. Как подобрать радиатор отопления.Скачать
Расчет отопления по площади помещения
Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.
Расчет отопления по площади помещения
Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.
Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить расчет отопления в частном доме калькулятор, встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
- Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
Предназначение помещения | Температура воздуха, °С | Относительная влажность, % | Скорость движения воздуха, м/с | |||
---|---|---|---|---|---|---|
оптимальная | допустимая | оптимальная | допустимая, max | оптимальная, max | допустимая, max | |
Для холодного времени года | ||||||
Жилая комната | 20÷22 | 18÷24 (20÷24) | 45÷30 | 60 | 0.15 | 0.2 |
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже | 21÷23 | 20÷24 (22÷24) | 45÷30 | 60 | 0.15 | 0.2 |
Кухня | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Туалет | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Ванная, совмещенный санузел | 24÷26 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Помещения для отдыха и учебных занятий | 20÷22 | 18÷24 | 45÷30 | 60 | 0.15 | 0.2 |
Межквартирный коридор | 18÷20 | 16÷22 | 45÷30 | 60 | Н/Н | Н/Н |
Вестибюль, лестничная клетка | 16÷18 | 14÷20 | Н/Н | Н/Н | Н/Н | Н/Н |
Кладовые | 16÷18 | 12÷22 | Н/Н | Н/Н | Н/Н | Н/Н |
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется) | ||||||
Жилая комната | 22÷25 | 20÷28 | 60÷30 | 65 | 0.2 | 0.3 |
- Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Элемент конструкции здания | Примерное значение теплопотерь |
---|---|
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями | от 5 до 10% |
«Мостики холода» через плохо изолированные стыки строительных конструкций | от 5 до 10% |
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) | до 5% |
Внешние стены, в зависимости от степени утепленности | от 20 до 30% |
Некачественные окна и внешние двери | порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания |
Крыша | до 20% |
Вентиляция и дымоход | до 25 ÷30% |
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q = S × 100
Q – необходимая тепловая мощность для помещения;
S – площадь помещения (м²);
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
S = 3,2 × 5,5 = 17,6 м²
Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт
Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
Q = S × h × 41 (или 34)
h – высота потолков (м);
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Возможно, вас заинтересует информация о том, что собой представляют биметаллические радиаторы отопления
Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений
Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната — комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».
Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.
Общие принципы и формула расчета
В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.
Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m
Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.
- «а» — коэффициент, учитывающий количество внешних стен в конкретной комнате.
Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.
Коэффициент принимают равным:
— внешних стен нет (внутреннее помещение): а = 0,8;
— внешняя стена одна: а = 1,0;
— внешних стен две: а = 1,2;
— внешних стен три: а = 1,4.
- «b» — коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.
На количество теплопотерь через стены влияет их расположение относительно сторон света
Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.
А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.
Исходя из этого, вводим коэффициент «b»:
— внешние стены комнаты смотрят на Север или Восток: b = 1,1;
— внешние стены помещения ориентированы на Юг или Запад: b = 1,0.
- «с» — коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»
Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.
Существенные коррективы могут внести преобладающие зимние ветры
По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» — графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.
Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:
— наветренная сторона дома: с = 1,2;
— подветренные стены дома: с = 1,0;
— стена, расположенные параллельно направлению ветра: с = 1,1.
- «d» — поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома
Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.
Карта-схема минимальных январских температур
Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.
Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:
— от – 35 °С и ниже: d = 1,5;
— от – 30 °С до – 34 °С: d = 1,3;
— от – 25 °С до – 29 °С: d = 1,2;
— от – 20 °С до – 24 °С: d = 1,1;
— от – 15 °С до – 19 °С: d = 1,0;
— от – 10 °С до – 14 °С: d = 0,9;
— не холоднее – 10 °С: d = 0,7.
- «е» — коэффициент, учитывающий степень утепленности внешних стен.
Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.
Огромное значение имеет степень утепленности внешних стен
Значение коэффициента для наших расчетов можно принять следующее:
— внешние стены не имеют утепления: е = 1,27;
— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0;
— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85.
Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.
- коэффициент «f» — поправка на высоту потолков
Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.
Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:
— высота потолков до 2.7 м: f = 1,0;
— высота потоков от 2,8 до 3,0 м: f = 1,05;
— высота потолков от 3,1 до 3,5 м: f = 1,1;
— высота потолков от 3,6 до 4,0 м: f = 1,15;
— высота потолков более 4,1 м: f = 1,2.
- «g» — коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.
Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:
— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4;
— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2;
— снизу расположено отапливаемое помещение: g = 1,0.
- «h» — коэффициент, учитывающий тип помещения, расположенного сверху.
Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:
— сверху расположен «холодный» чердак: h = 1,0;
— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9;
— сверху расположено любое отапливаемое помещение: h = 0,8.
- «i» — коэффициент, учитывающий особенности конструкции окон
Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.
Без слов понятно, что термоизоляционные качества этих окон — существенно различаются
Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.
Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:
— стандартные деревянные окна с обычным двойным остеклением: i = 1,27;
— современные оконные системы с однокамерным стеклопакетом: i = 1,0;
— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85.
- «j» — поправочный коэффициент на общую площадь остекления помещения
Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.
Чем больше площадь остекления, тем значительнее общие теплопотери
Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:
х = ∑Sок / Sп
∑Sок – суммарная площадь окон в помещении;
Sп – площадь помещения.
В зависимости от полученного значения и определяется поправочный коэффициент «j»:
— х = 0 ÷ 0,1 → j = 0,8;
— х = 0,11 ÷ 0,2 → j = 0,9;
— х = 0,21 ÷ 0,3 → j = 1,0;
— х = 0,31 ÷ 0,4 → j = 1,1;
— х = 0,41 ÷ 0,5 → j = 1,2;
- «k» — коэффициент, дающий поправку на наличие входной двери
Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода
Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:
— двери нет: k = 1,0;
— одна дверь на улицу или на балкон: k = 1,3;
— две двери на улицу или на балкон: k = 1,7.
- «l» — возможные поправки на схему подключения радиаторов отопления
Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».
Иллюстрация | Тип врезки радиатора | Значение коэффициента «l» |
---|---|---|
Подключение по диагонали: подача сверху, «обратка» снизу | l = 1.0 | |
Подключение с одной стороны: подача сверху, «обратка» снизу | l = 1.03 | |
Двухстороннее подключение: и подача, и «обратка» снизу | l = 1.13 | |
Подключение по диагонали: подача снизу, «обратка» сверху | l = 1.25 | |
Подключение с одной стороны: подача снизу, «обратка» сверху | l = 1.28 | |
Одностороннее подключение, и подача, и «обратка» снизу | l = 1.28 |
- «m» — поправочный коэффициент на особенности места установки радиаторов отопления
И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.
Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:
Иллюстрация | Особенности установки радиаторов | Значение коэффициента «m» |
---|---|---|
Радиатор расположен на стене открыто или не перекрывается сверху подоконником | m = 0,9 | |
Радиатор сверху перекрыт подоконником или полкой | m = 1,0 | |
Радиатор сверху перекрыт выступающей стеновой нишей | m = 1,07 | |
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части — декоративным экраном | m = 1,12 | |
Радиатор полностью заключен в декоративный кожух | m = 1,2 |
Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.
У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья — «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.
Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.
Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.
Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).
Для примера взят совершенно произвольный план жилого дома
Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.
Составляем таблицу примерно такого типа:
Помещение, его площадь, высота потолка. Утепленность пола и «соседство» сверху и снизу | Количество внешних стен и их основное расположение относительно сторон света и «розы ветров». Степень утепления стен | Количество, тип и размер окон | Наличие входных дверей (на улицу или на балкон) | Требуемая тепловая мощность (с учетом 10% резерва) |
---|---|---|---|---|
Площадь 78,5 м² | 10,87 кВт ≈ 11 кВт | |||
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху — утепленный чердак. | Одна, Юг, средняя степень утепления. Подветренная сторона | Нет | Одна | 0,52 кВт |
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху — утепленный чердак | Нет | Нет | Нет | 0,62 кВт |
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху — утепленный чердак | Две. Юг-Запад. Средняя степень утепления. Подветренная сторона | Два, однокамерный стеклопакет, 1200 × 900 мм | Нет | 2.22 кВт |
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху — утепленный чердак | Две, Север — Запад. Высокая степень утепления. Наветренная | Два, двухкамерный стеклопакет, 1400 × 1000 мм | Нет | 2,6 кВт |
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху — утепленный чердак | Две, Север, Восток. Высокая степень утепления. Наветренная сторона | Одно, двухкамерный стеклопакет, 1400 × 1000 мм | Нет | 1,73 кВт |
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак | Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра | Четыре, двухкамерный стеклопакет, 1500 × 1200 мм | Нет | 2,59 кВт |
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. | Одна, Север. Высокая степень утепления. Наветренная сторона | Одно. Деревянная рама с двойным остеклением. 400 × 500 мм | Нет | 0,59 кВт |
ИТОГО: |
Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.
Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.
Калькулятор расчета требуемой тепловой мощности отопления по помещениям
Согласитесь, что рассчитанные результаты, особенно если рассматривать по помещениям в отдельности, могут существенно отличаться от тех, которые получились бы при упоминавшимся выше соотношении 100 Вт на 1 м².
Кстати, калькулятор дает возможность немного «поиграть» с теми исходными данными, которые хозяева в силах изменить, и посмотреть, как будут меняться результаты. Возможно, это поможет выявить «слабые места» и придаст своеобразный импульс на принятие мер по обеспечению максимальной утепленности дома. Затраты на качественную термоизоляцию очень быстро окупятся экономией на системе отопления.
Приведенная система расчета тепловой мощности отопления может вызвать вопрос в том плане, что достаточно размыто указаны критерии утепленности стен. С этим можно согласиться – но это сделано лишь для упрощения самостоятельны вычислений с вполне допустимым уровнем погрешности. Если отталкиваться от точного «канонического» расчета тепловых потерь, алгоритм получится слишком сложным и громоздким, и далеко не каждый среднестатистический посетитель сможет с ним разобраться.
Тем не менее, в качестве полезного «бонуса» будет представлена несложная методика достаточно точной оценки теплотехнических характеристик стен и других элементов здания, чтобы любой хозяин смог сам увидеть, насколько они утеплены, и в какой дополнительной термоизоляции еще нуждаются.
Оценка степени утепленности элемента дома и требуемой толщины термоизоляции
Общий принцип расчета
Принцип расчета заключается в том, что каждая строительная конструкция жилого дома должна обладать определенным нормированным значением сопротивления теплопередаче. Эти параметры рассчитаны специалистами и сведены в таблицах СНиП, отдельно для каждого региона, в зависимости от особенностей климатических условий.
Таблицы слишком объемны, поэтому в нашем случае предлагаем воспользоваться картой-схемой, расположенной ниже.
Карта схема с нормированными значениями сопротивления теплопередаче строительных конструкций
Обратите внимание, что для стен, перекрытий (полов или потолков) и покрытий (кровля) указаны свои значений – они выделены различными оттенками.
Чаще всего и стены, и другие ограждающие элементы дома имеют многослойную конструкцию (впрочем, это не догма – возможно и однослойное строение, но так расчет будет ещё проще). Каждый из слоев обладает собственными характеристиками термического сопротивления, и все они в сумме дадут итоговый параметр.
Значение сопротивления теплопередаче для каждого отдельного слоя равно:
Rx = hх / λх
hх — толщина слоя в метрах
λх — значение коэффициента теплопроводности материала слоя. Это табличная величина, которую несложно отыскать в справочниках для любого из строительных, отделочных или утеплительных материалов.
Таким образом, зная особенности конструкции стены или другого ограждения, несложно рассчитать суммарную величину сопротивления теплопередаче и выявить, насколько она не соответствует нормированному значению. Ну а если полученную разницу умножить на коэффициент теплопроводности выбранного термоизоляционного материала, то это станет рекомендуемой толщиной утепления, чтобы конструкция соответствовала необходимым параметрам.
Упрощенная схема многослойной ограждающей конструкции
В предложенном ниже калькуляторе предусмотрен расчет для многослойной конструкции, включающей основной слой (поз. 1), уже имеющееся утепление (если оно есть) (поз. 2), слой внутренней (поз. 3) и внешней (поз. 4) отделки. Если каких-то слоев в реальности нет – то этот пункт в калькуляторе просто не заполняется.
Примечание: в расчёт не берутся внешние отделочные слои вентилируемых конструкций фасада или кровли (например, сайдинг или кровельный материал), так как их термическое сопротивление не оказывает значимого воздействия на общую утепленность.
Последним пунктом в калькуляторе будет предложено выбрать тот или иной вид утеплителя, и в результате расчетов будет указана рекомендуемая толщина термоизоляционного слоя.
Калькулятор оценки необходимости дополнительного утепления
Вот теперь оценить степень утепленности своих стен (или других элементов здания), для расчета необходимой тепловой мощности отопления – уже не составит большого труда. Можно поступить примерно так – ввести все запрашиваемые значения, а в конце указать в качестве утеплителя, например, минеральную базальтовую вату.
- Если получится результат, стремящийся к нулю (менее 10 мм толщины) или даже отрицательное значение, то можно считать стены хорошо утепленными.
- При рекомендуемой толщине утепления до 75 ÷ 80 мм можно условно считать, что стены имеют среднюю степень утепленности.
- В том случае, когда результат больше, а еще хуже — «зашкаливает» за 100 мм – беда, уровень теплопотерь очень высокий, и система отопления будет «пожирать» энергоресурсы на никому не нужный «обогрев улицы». И в этом случае главные усилия должны быть сконцентрированы на обеспечение надежной термоизоляции.
Безусловно, при желании в интернете можно отыскать более мощные программы профессионального уровня сложности для расчета теплотехнических характеристик системы отопления. В качестве примера – видеосюжет, в котором показан процесс подобного расчета. Но, повторимся, для проведения самостоятельных вычислений вполне подойдет и предложенная методика – уровень погрешности будет вполне допустимым. Печь долгого горения узнавайте по ссылке.
Видео: пример расчета системы отопления с помощью специальной прикладной программы
Возможно, вас заинтересует информация о том, что такое байпас в системе отопления
Евгений Афанасьев главный редактор
Автор публикации 11.02.2016
Понравилась статья?
Сохраните, чтобы не потерять!
Видео:Расчет радиаторов отопления Часть 1Скачать
Как рассчитывается тепловая нагрузка на систему отопления здания
Предположим, вам захотелось самостоятельно подобрать котел, радиаторы и трубы отопительной системы частного дома. Задача №1 – сделать расчет тепловой нагрузки на отопление, проще говоря, определить общий расход теплоты, необходимой для прогрева здания до комфортной температуры внутри помещений. Предлагаем изучить 3 расчетных методики – разные по сложности и точности результатов.
Видео:1 Расчет мощности радиатораСкачать
Способы определения нагрузки
Сначала поясним значение термина. Тепловая нагрузка – это общее количество теплоты, расходуемое системой отопления на обогрев помещений до нормативной температуры в наиболее холодный период. Величина исчисляется единицами энергии – киловаттами, килокалориями (реже – килоджоулями) и обозначается в формулах латинской буквой Q.
Зная нагрузку на отопление частного дома в целом и потребность каждого помещения в частности, нетрудно подобрать котел, обогреватели и батареи водяной системы по мощности. Как можно рассчитать данный параметр:
- Если высота потолков не достигает 3 м, производится укрупненный расчет по площади отапливаемых комнат.
- При высоте перекрытий 3 м и более расход тепла считается по объему помещений.
- Определение теплопотерь через внешние ограждения и затрат на подогрев вентиляционного воздуха согласно СНиП.
Примечание. В последние годы широкую популярность обрели онлайн-калькуляторы, размещаемые на страницах различных интернет-ресурсов. С их помощью определение количества тепловой энергии выполняется быстро и не требует дополнительных инструкций. Минус – достоверность результатов нужно проверять, ведь программы пишут люди, не являющиеся теплотехниками.
Две первые расчетные методики основаны на применении удельной тепловой характеристики по отношению к обогреваемой площади либо объему здания. Алгоритм простой, используется повсеместно, но дает весьма приближенные результаты и не учитывает степень утепления коттеджа.
Считать расход тепловой энергии по СНиП, как делают инженеры–проектировщики, гораздо сложнее. Придется собрать множество справочных данных и потрудиться над вычислениями, зато конечные цифры отразят реальную картину с точностью 95%. Мы постараемся упростить методику и сделать расчет нагрузки на отопление максимально доступным для понимания.
Видео:Расчет теплопотерь на конкретном примереСкачать
Для примера – проект одноэтажного дома 100 м²
Чтобы доходчиво пояснить все способы определения количества тепловой энергии, предлагаем взять в качестве примера одноэтажный дом общей площадью 100 квадратов (по наружному обмеру), показанный на чертеже. Перечислим технические характеристики здания:
- регион постройки – полоса умеренного климата (Минск, Москва);
- толщина внешних ограждений – 38 см, материал – силикатный кирпич;
- наружное утепление стен – пенопласт толщиной 100 мм, плотность – 25 кг/м³;
- полы – бетонные на грунте, подвал отсутствует;
- перекрытие – ж/б плиты, утепленные со стороны холодного чердака пенопластом 10 см;
- окна – стандартные металлопластиковые на 2 стекла, размер – 1500 х 1570 мм (h);
- входная дверь – металлическая 100 х 200 см, изнутри утеплена экструдированным пенополистиролом 20 мм.
В коттедже устроены межкомнатные перегородки в полкирпича (12 см), котельная располагается в отдельно стоящей постройке. Площади комнат обозначены на чертеже, высоту потолков будем принимать в зависимости от поясняемой расчетной методики – 2.8 либо 3 м.
Видео:Расчет теплопотерь домаСкачать
Считаем расход теплоты по квадратуре
Для приблизительной прикидки отопительной нагрузки обычно используется простейший тепловой расчет: берется площадь здания по наружному обмеру и умножается на 100 Вт. Соответственно, потребление тепла дачным домиком 100 м² составит 10000 Вт или 10 кВт. Результат позволяет подобрать котел с коэффициентом запаса 1.2—1.3, в данном случае мощность агрегата принимается равной 12.5 кВт.
Мы предлагаем выполнить более точные вычисления, учитывающие расположение комнат, количество окон и регион застройки. Итак, при высоте потолков до 3 м рекомендуется использовать следующую формулу:
Расчет ведется для каждого помещения отдельно, затем результаты суммируются и умножаются на региональный коэффициент. Расшифровка обозначений формулы:
- Q – искомая величина нагрузки, Вт;
- Sпом – квадратура комнаты, м²;
- q – показатель удельной тепловой характеристики, отнесенный к площади помещения, Вт/м²;
- k – коэффициент, учитывающий климат в районе проживания.
Для справки. Если частный дом расположен в полосе умеренного климата, коэффициент k принимается равным единице. В южных регионах k = 0.7, в северных применяются значения 1.5—2.
В приближенном подсчете по общей квадратуре показатель q = 100 Вт/м². Подобный подход не учитывает расположение комнат и разное количество световых проемов. Коридор, находящийся внутри коттеджа, потеряет гораздо меньше тепла, чем угловая спальня с окнами той же площади. Мы предлагаем принимать величину удельной тепловой характеристики q следующим образом:
- для помещений с одной наружной стеной и окном (или дверью) q = 100 Вт/м²;
- угловые комнаты с одним световым проемом – 120 Вт/м²;
- то же, с двумя окнами – 130 Вт/м².
Как правильно подбирать значение q, наглядно показано на плане здания. Для нашего примера расчет выглядит так:
Q = (15.75 х 130 + 21 х 120 + 5 х 100 + 7 х 100 + 6 х 100 + 15.75 х 130 + 21 х 120) х 1 = 10935 Вт ≈ 11 кВт.
Как видите, уточненные вычисления дали другой результат – по факту на отопление конкретного домика 100 м² израсходуется на 1 кВт тепловой энергии больше. Цифра учитывает расход теплоты на подогрев наружного воздуха, проникающего в жилище сквозь проемы и стены (инфильтрацию).
Видео:Расчет мощности котла отопленияСкачать
Вычисление тепловой нагрузки по объему комнат
Когда расстояние между полами и потолком достигает 3 м и более, предыдущий вариант расчета использовать нельзя – результат выйдет некорректным. В подобных случаях отопительную нагрузку принято считать по удельным укрупненным показателям расхода теплоты на 1 м³ объема помещения.
Формула и алгоритм вычислений остаются прежними, только параметр площади S меняется на объем – V:
Соответственно, принимается другой показатель удельного расхода q, отнесенный к кубатуре каждого помещения:
- комната внутри здания либо с одной внешней стеной и окном – 35 Вт/м³;
- помещение угловое с одним окном – 40 Вт/м³;
- то же, с двумя световыми проемами – 45 Вт/м³.
Примечание. Повышающие и понижающие региональные коэффициенты k применяются в формуле без изменений.
Теперь для примера определим нагрузку на отопление нашего коттеджа, взяв высоту потолков равной 3 м:
Q = (47.25 х 45 + 63 х 40 + 15 х 35 + 21 х 35 + 18 х 35 + 47.25 х 45 + 63 х 40) х 1 = 11182 Вт ≈ 11.2 кВт.
Заметно, что требуемая тепловая мощность системы отопления выросла на 200 Вт по сравнению с предыдущим расчетом. Если же принять высоту комнат 2.7—2.8 м и сосчитать затраты энергии через кубатуру, то цифры получатся примерно одинаковые. То есть, способ вполне применим для укрупненного подсчета теплопотерь в помещениях любой высоты.
Видео:Расчёт секций радиатора. Как рассчитать секции в радиаторе отопления. Батарея.Скачать
Расчетный алгоритм согласно СНиП
Данный способ – наиболее точный из всех существующих. Если вы воспользуетесь нашей инструкцией и правильно выполните расчет, можете быть уверены в результате на 100% и спокойно подбирать отопительное оборудование. Порядок действий выглядит так:
- Измерьте квадратуру внешних стен, полов и перекрытий отдельно в каждой комнате. Определите площадь окон и входных дверей.
- Рассчитайте тепловые потери через все наружные ограждения.
- Узнайте расход тепловой энергии, идущей на подогрев вентиляционного (инфильтрационного) воздуха.
- Суммируйте результаты и получайте реальный показатель тепловой нагрузки.
Обмер жилых комнат изнутри
Важный момент. В двухэтажном коттедже внутренние перекрытия не учитываются, поскольку не граничат с окружающей средой.
Суть расчета тепловых потерь относительно проста: нужно выяснить, сколько энергии теряет каждый тип строительной конструкции, ведь окна, стенки и полы сделаны из разных материалов. Определяя квадратуру наружных стен, вычитайте площадь остекленных проемов — последние пропускают больший тепловой поток и потому считаются отдельно.
При замере ширины комнат прибавляйте к ней половину толщины внутренней перегородки и захватывайте наружный угол, как показано на схеме. Цель – учесть полную квадратуру внешнего ограждения, теряющего тепло по всей поверхности.
При замерах нужно захватывать угол постройки и половину внутренней перегородки
Определяем теплопотери стен и крыши
Формула расчета теплового потока, проходящего через конструкцию одного типа (например, стену), выглядит следующим образом:
- величину теплопотерь через одно ограждение мы обозначили Qi, Вт;
- А – квадратура стенки в пределах одного помещения, м²;
- tв – комфортная температура внутри комнаты, обычно принимается +22 °С;
- tн – минимальная температура уличного воздуха, которая держится в течение 5 самых холодных зимних дней (принимайте реальное значение для вашей местности);
- R – сопротивление толщи наружного ограждения передаче тепла, м²°С/Вт.
Коэффициенты теплопроводности для некоторых распространенных стройматериалов
В приведенном списке остается один неопределенный параметр – R. Его значение зависит от материала стеновой конструкции и толщины ограждения. Чтобы рассчитать сопротивление теплопередаче, действуйте в таком порядке:
- Определите толщину несущей части внешней стены и отдельно — слоя утеплителя. Буквенное обозначение в формулах – δ, считается в метрах.
- Узнайте из справочных таблиц коэффициенты теплопроводности конструктивных материалов λ, единицы измерения — Вт/(мºС).
- Поочередно подставьте найденные величины в формулу:
- Определите R для каждого слоя стены по отдельности, результаты сложите, после чего используйте в первой формуле.
Вычисления повторите отдельно для окон, стен и перекрытия в пределах одной комнаты, затем переходите в следующее помещение. Потери теплоты через полы считаются отдельно, о чем рассказано ниже.
Совет. Правильные коэффициенты теплопроводности различных материалов указаны в нормативной документации. Для России это Свод Правил СП 50.13330.2012, для Украины — ДБН В.2.6–31
2006. Внимание! В расчетах используйте значение λ, прописанные в столбце «Б» для условий эксплуатации.
Пример расчета для гостиной нашего одноэтажного дома (высота потолков 3 м):
- Площадь наружных стен вместе с окнами: (5.04 + 4.04) х 3 = 27.24 м². Квадратура окон – 1.5 х 1.57 х 2 = 4.71 м². Чистая площадь ограждения: 27.24 – 4.71 = 22.53 м².
- Теплопроводность λ для кладки силикатного кирпича равна 0.87 Вт/(мºС), пенопласта 25 кг/м³ – 0.044 Вт/(мºС). Толщина – соответственно 0.38 и 0.1 м, считаем сопротивление теплопередаче: R = 0.38 / 0.87 + 0.1 / 0.044 = 2.71 м²°С/Вт.
- Температура наружная – минус 25 °С, внутри гостиной – плюс 22 °С. Разность составит 25 + 22 = 47 °С.
- Определяем теплопотери сквозь стенки гостиной: Q = 1 / 2.71 х 47 х 22.53 = 391 Вт.
Стена коттеджа в разрезе
Аналогичным образом считается тепловой поток через окна и перекрытие. Термическое сопротивление светопрозрачных конструкций обычно указывает производитель, характеристики ж/б перекрытия толщиной 22 см находим в нормативной либо справочной литературе:
- R утепленного перекрытия = 0.22 / 2.04 + 0.1 / 0.044 = 2.38 м²°С/Вт, теплопотери сквозь кровлю – 1 / 2.38 х 47 х 5.04 х 4.04 = 402 Вт.
- Потери сквозь оконные проемы: Q = 0.32 x 47 x71 = 70.8 Вт.
Таблица коэффициентов теплопроводности металлопластиковых окон. Мы взяли самый скромный однокамерный стеклопакет (k = 0.32 Вт/(м•°С)
Итого теплопотери в гостиной (исключая полы) составят 391 + 402 + 70.8 = 863.8 Вт. Аналогичные подсчеты ведутся по остальным комнатам, результаты суммируются.
Обратите внимание: коридор внутри здания не соприкасается с наружной оболочкой и теряет тепло только через крышу и полы. Какие ограждения нужно учитывать в расчетной методике, смотрите на видео.
Деление пола на зоны
Чтобы выяснить количество теплоты, теряемое полами на грунте, здание в плане делится на зоны шириной 2 м, как изображено на схеме. Первая полоса начинается от внешней поверхности строительной конструкции.
При разметке отсчет начинается от внешней поверхности здания
Расчетный алгоритм следующий:
- Расчертите план коттеджа, поделите на полосы шириной 2 м. Максимальное число зон – 4.
- Вычислите площадь пола, попадающего отдельно в каждую зону, пренебрегая межкомнатными перегородками. Обратите внимание: квадратура по углам считается дважды (заштриховано на чертеже).
- Пользуясь расчетной формулой (для удобства приводим ее повторно), определите теплопотери на всех участках, полученные цифры суммируйте.
- Сопротивление теплопередаче R для зоны I принимается равным 2.1 м²°С/Вт, II – 4.3, III – 8.6, остального пола – 14.2 м²°С/Вт.
Примечание. Если речь идет об отапливаемом подвале, первая полоса располагается на подземной части стены, начиная от уровня грунта.
Полы, утепленные минеральной ватой либо пенополистиролом, рассчитываются идентичным образом, только к фиксированным значениям R прибавляется термическое сопротивление слоя утеплителя, определяемое по формуле δ / λ.
Пример вычислений в гостиной загородного дома:
- Квадратура зоны I равняется (5.04 + 4.04) х 2 = 18.16 м², участка II – 3.04 х 2 = 6.08 м². Остальные зоны в гостиную не попадают.
- Расход энергии на 1-ю зону составит 1 / 2.1 х 47 х 18.16 = 406.4 Вт, на вторую – 1 / 4.3 х 47 х 6.08 = 66.5 Вт.
- Величина теплового потока сквозь полы гостиной – 406.4 + 66.5 = 473 Вт.
Теперь нетрудно подбить общие теплопотери в рассматриваемой комнате: 863.8 + 473 = 1336.8 Вт, округленно — 1.34 кВт.
Нагрев вентиляционного воздуха
В подавляющем большинстве частных домов и квартир устроена естественная вентиляция. Уличный воздух проникает внутрь сквозь притворы окон и дверей, а также приточные отверстия. Нагревом поступающей холодной массы занимается система отопления, расходуя дополнительную энергию. Как узнать количество этих потерь:
- Поскольку расчет инфильтрации слишком сложен, нормативные документы допускают выделение 3 м³ воздуха в час на каждый метр квадратный площади жилища. Общий расход приточного воздуха L считается просто: квадратура помещения умножается на 3.
- L – это объем, а нужна масса m воздушного потока. Узнайте ее путем умножения на плотность газа, взятую из таблицы.
- Масса воздуха m подставляется в формулу школьного курса физики, позволяющую определить количество затраченной энергии.
Высчитаем потребное количество теплоты на примере многострадальной гостиной площадью 15.75 м². Объем притока L = 15.75 х 3 = 47.25 м³/ч, масса – 47.25 х 1.422 = 67.2 кг/ч. Принимая теплоемкость воздуха (обозначена буквой C) равной 0.28 Вт / (кг ºС), находим расход энергии: Qвент = 0.28 х 67.2 х 47 = 884 Вт. Как видите, цифра довольно внушительная, вот почему подогрев воздушных масс нужно учитывать обязательно.
Окончательный расчет теплопотерь здания плюс расход теплоты на вентиляцию определяется суммированием всех полученных ранее результатов. В частности, нагрузка на отопление гостиной выльется в цифру 0.88 + 1.34 = 2.22 кВт. Аналогичным образом рассчитываются все помещения коттеджа, в конце энергетические затраты складываются в одну цифру.
Окончательный расчет
Если ваш мозг еще не закипел от обилия формул ?, то наверняка интересно увидеть результат по всему одноэтажному дому. В предыдущих примерах мы проделали основную работу, осталось лишь пройти по другим помещениям и узнать теплопотери всей наружной оболочки здания. Найденные исходные данные:
- термическое сопротивление стен — 2.71, окон – 0.32, перекрытия – 2.38 м²°С/Вт;
- высота потолков – 3 м;
- R для входной двери, утепленной экструдированным пенополистиролом, равен 0.65 м²°С/Вт;
- температура внутренняя – 22, внешняя – минус 25 °С.
Чтобы упростить вычисления, предлагаем составить таблицу в Exel, потом занесем туда промежуточные и окончательные результаты.
Пример расчетной таблицы теплопотерь в Exel
По окончании расчетов и заполнении таблицы получены следующие значения расходов тепловой энергии по помещениям:
- гостиная – 2.22 кВт;
- кухня – 2.536 кВт;
- прихожая – 745 Вт;
- коридор – 586 Вт;
- санузел – 676 Вт;
- спальня – 2.22 кВт;
- детская – 2.536 кВт.
Итоговое значение нагрузки на отопительную систему частного дома площадью 100 м² составило 11.518 Вт, округленно – 11.6 кВт. Примечательно, что результат отличается от приближенных методов расчета буквально на 5%.
Но согласно нормативным документам, окончательную цифру нужно умножить на коэффициент 1.1 неучтенных теплопотерь, возникающих из-за ориентации здания по сторонам света, ветровых нагрузок и так далее. Соответственно, окончательный результат – 12.76 кВт. Подробно и доступно об инженерной методике рассказывается на видео:
Видео:Сколько секций радиаторов на квадратный метр ставить в комнате (квартире)Скачать
Как воспользоваться результатами вычислений
Зная потребность здания в тепловой энергии, домовладелец может:
- четко подобрать мощность теплосилового оборудования для обогрева коттеджа;
- набрать нужное количество секций радиаторов;
- определить необходимую толщину утеплителя и выполнить теплоизоляцию здания;
- выяснить расход теплоносителя на любом участке системы и при необходимости выполнить гидравлический расчет трубопроводов;
- узнать среднесуточное и месячное потребление тепла.
Последний пункт представляет особый интерес. Мы нашли величину тепловой нагрузки за 1 час, но ее можно пересчитать на более продолжительный период и вычислить предполагаемый расход топлива — газа, дров или пеллет.
🌟 Видео
Расчет электрического теплого пола (площадь)Скачать
Как рассчитывается плата за отопление по 1/12Скачать
Подбор радиаторов отопления по мощности и площади. Основная ошибка в рассчетах. Правильная формула.Скачать
Расчет радиаторов отопления Часть 2Скачать
расчет нагрузки на отоплениеСкачать
Отопление частного дома: расчёт теплопотерь. Часть 1Скачать