- iSopromat.ru
- Решение задач, контрольных и РГР
- Набор студента для учёбы
- Техническая механика
- Теоретическая механика
- Распределенные нагрузки
- Пример решения задачи с распределенной нагрузкой
- Распределенная нагрузка на балку — формулы, условия и примеры расчета
- Равномерно и неравномерно распределенная нагрузка на балку
- Пример решения задач с распределенной нагрузкой
- 💡 Видео
Видео:Распределенная нагрузкаСкачать
iSopromat.ru
Распределенной нагрузкой называют внешние или внутренние усилия, которые приложены не в одной точке твердого тела (т.е. не сосредоточены в одной точке), а равномерно, случайным образом или по заданному закону распределены по его определенной длине, площади или объему.
Воздействие на детали, конструкции, элементы механизмов может быть задано распределенными нагрузками: в плоской системе задается интенсивность действия по длине конструкции, в пространственной системе – по площади.
Размерность для линейной нагрузки — Н/м, для нагрузки распределенной по площади — Н/м 2 , для объемной (например при учете собственного веса элементов конструкции) — Н/м 3 .
Например, на рисунке 1.23, а приведена равномерно распределенная по длине AB нагрузка интенсивностью q, измеряемая в Н/м. Эта нагрузка может быть заменена сосредоточенной силой
приложенной в середине отрезка AB.
На рисунке 1.23, б показана равномерно убывающая (возрастающая) нагрузка, которая может быть заменена равнодействующей силой
приложенной в точке C, причем AC = 2/3AB.
В произвольном случае, зная функцию q(x) (рисунок 1.23, в), рассчитываем эквивалентную силу
Эта сила приложена в центре тяжести площади, ограниченной сверху от балки AB линией q(x).
Примером может служить расчет усилий, разрывающих стенки баллона со сжатым газом. Определим результирующую силу давления в секторе трубы при интенсивности q [Н/м]; R – радиус трубы, 2α – центральный угол, ось Ox – ось симметрии (рисунок 1.24).
Выделим элемент сектора с углом ∆φ и определим силу ∆Q, действующую на плоский элемент дуги:
В силу симметрии элемента трубы (с дугой AB) относительно оси Ox проекция результирующей силы на ось Oy:
где АВ – хорда, стягивающая концы дуги.
Для цилиндрической емкости высотой h и внутренним давлением P на стенки действует нагрузка интенсивностью q = p [Н/м, 2 ]. Если цилиндр рассечен по диаметру (рисунок 1.25), то равнодействующая этих сил равна F = q ∙ d ∙ h ( d – внутренний диаметр) или
Разрывающие баллон по диаметру усилия:
Если принять a – толщина стенки, то (пренебрегая усилиями в крышке и дне цилиндра) растягивающее напряжение в стенке равно
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:Как собрать нагрузки на балку перекрытияСкачать
Решение задач, контрольных и РГР
Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.
Если стоимость устроит вы сможете оформить заказ.
Видео:Преобразование равномерно распределенной нагрузки.Скачать
Набор студента для учёбы
— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку
Видео:СОПРОМАТ. НАЙДИ НАГРУЗКУ НА КОЛОННЫ?Скачать
Техническая механика
Видео:Сбор нагрузок. Снеговые нагрузкиСкачать
Теоретическая механика
Распределенные нагрузки
Как мы уже знаем, любая сила характеризуется тремя свойствами: модулем (скалярной размерностью), вектором (направлением в пространстве) и точкой приложения. Для того, чтобы иметь полное представление о характере и последствиях воздействия любой силы на тело или элемент конструкции, необходимо знать — какова величина этой силы, куда она направлена и к какой точке приложена.
В действительности сила не может быть приложена к точке, поскольку точка — безразмерная, бесконечно малая единица пространства, поэтому фактически силы воздействуют на очень малую площадку, размерами которой пренебрегают. Такие силы (приложенные к ничтожно малой площадке тела) называют сосредоточенными .
В реальности часто встречаются силы, приложенные не к точке, а к объему или поверхности тела, например сила тяжести, давления ветра, воды и т. п., т. е. нагрузку воспринимает не бесконечно малая площадка, а значительная площадь или объем тела. Такие силы называют распределенными .
Примером распределенной силы (обычно употребляют выражение «распределенная нагрузка») может послужить выпавший на крышу дома снег. Сила тяжести снежного покрова давит на всю поверхность крыши, нагружая одинаково (или неодинаково) каждую единицу ее площади, а не какую-либо точку.
Плоская система распределенных сил характеризуется ее интенсивностью, обычно обозначаемой латинской буквой q .
Интенсивность — это сила, приходящаяся на единицу длины (или площади) нагруженного участка.
Интенсивность в системе единиц СИ выражается в ньютонах на метр (Н/м) или, соответственно, в ньютонах на квадратный метр (для нагрузки, действующей на площадь).
Интенсивность воздействия силы на площадь характеризует такие физические понятия, как давление и напряжение. В плоской системе рассматривается интенсивность действия силы на единицу длины.
Распределенная нагрузка, имеющая постоянную интенсивность по всей длине участка называется равномерно распределенной (см. рисунок 1) .
При решении задач статики распределенную нагрузку заменяют ее равнодействующей. Модуль равнодействующей равномерно распределенной нагрузки равен Q = ql (см. рисунок) .
Равнодействующая равномерно распределенной нагрузки Q прикладывается в середине отрезка АВ .
Распределенная нагрузка, имеющая переменную интенсивность, называется неравномерно распределенной (рис. 2) .
Примером такой нагрузки может служить меняющееся по высоте давление воды на плотину или снег, лежащий на крыше неровным слоем.
Определение точки С приложения равнодействующей неравномерно распределенной нагрузки производится путем геометрических расчетов и построений. Равнодействующая сила Q при таких нагрузках равна площади фигуры, охватываемой эпюрой нагрузки, а точка С приложения равнодействующей расположена в центре тяжести этой фигуры.
Нагрузки, распределенные по поверхности (по площади), характеризуются давлением, т. е. силой, приходящейся на единицу площади. В системе единиц СИ давление измеряется в Паскалях (Па) или ньютонах на квадратный метр (Н/м 2 ).
Пример решения задачи с распределенной нагрузкой
Задача: Балка находится в равновесии под действием сосредоточенной силы F = 100 Н и равномерно распределенной нагрузки q = 60 Н/м (см. схему 3) .
Необходимо определить реакцию RВ опоры В .
Решение .
Поскольку по условию задачи необходимо определить реакцию опоры В , составим уравнение моментов сил относительно опоры А , учитывая, что равномерно распределенную нагрузку можно заменить сосредоточенной силой:
Q = ql , где l = (10 — 5) метров — часть балки, к которой приложена распределенная нагрузка .
Точка приложения сосредоточенной силы Q расположена в середине той части балки, к которой приложена распределенная нагрузка; плечо этой силы относительно опоры А будет равно: h = (10 — 5)/2 = 2,5 м.
Cоставляем уравнение моментов сил относительно опоры А из условия, что балка находится в состоянии равновесия (уравнение равновесия) .
- сила RВ создает относительно точки А положительный момент, плечо которого равно 10м;
- сила F создает относительно точки А отрицательный момент, плечо которого равно 5 м;
- распределенная нагрузка q создает (посредством силы Q и плеча h ) относительно точки А отрицательный момент.
Получаем уравнение равновесия балки, в котором лишь одна неизвестная величина ( RВ ) :
ΣM = 10RВ — qlh — 5F = 10RВ — q(10-5)(10-5)/2 — 5F = 0 , откуда находим искомую реакцию опоры RВ :
Видео:Балка с линейно распределенной нагрузкойСкачать
Распределенная нагрузка на балку — формулы, условия и примеры расчета
Взаимодействия с деталями, отдельными элементами и конструкциями механизма задается с помощью нагрузок. В плоскости задается интенсивность взаимодействия конструкции по длине, а в пространстве – по её площади.
Распределённая нагрузка на балку задается площадью, обозначается буквой q и измеряется в [H/м 3 ] для объемной конструкции, в [H/м 2 ] — для площади, для линейной – в [H/м].
Продемонстрируем это на рисунке:
Нагрузку также можно заменить тягой, рассредоточенной по всей поверхности. Значение определяется по формуле:
здесь AB является тяжестью, q – интенсивностью, которая измеряется в [H/м].
Примечательно, что сила приложена к середине данного отрезка AB.
На данном рисунке представлен расчёт возрастающей нагрузки, которую можно заменить равнодействующей единицей, рассчитываемое по формуле:
где qmax – максимальная интенсивность [Н/м].
Q приложена к точке C, где AC равно: AC = 2/3 AB
Рассматривая функцию q(x), представленную на рисунке:
можно высчитать значение эквивалентной силы по формуле:
Видео:Сбор нагрузок. Собственный вес конструкций. Спецвыпуск № 2 для ПГС. (Collect loads)Скачать
Равномерно и неравномерно распределенная нагрузка на балку
Распределение сил, которые лежат в одной плоскости, задается равномерно распределенной тяжестью. Основным обозначением является интенсивность q — предельная тяга, несущая равнодействующую на единицу длины нагруженного участка АВ длиной а.
Единицы измерения распределённой нагрузки [Н/м].
Её также можно заменить на величину Q, которая приложена в середину AB.
Составим формулу: Q = q∗a
Неравномерно распределённую нагрузку чаще всего упрощают, приводя её к эквивалентной равномерно распределенной, чтобы упростить расчеты.
При построении также следует учитывать максимальный прогиб балки, её прочность, расчетную опорную реакцию и моментальную опору.
Видео:Собираем нагрузки на колоннуСкачать
Пример решения задач с распределенной нагрузкой
Рассмотрим пример распределенной нагрузки на балку. Им может послужить тяга, благодаря которой происходит разрыв стальной стенки баллона с некоторым газом.
Для начала определяем результирующую давления в металлической трубе. Интенсивность равна q, радиус этого сектора трубы – R, ось симметрии Оx, а 2α – это центральный угол. Представим это на рисунке:
Выделим элемент сектора трубы ∆ϕ.
Затем определим единицу силы ∆Q. Она действует на плоскость дуги. Составим формулу:
Проекция результирующей тяги на ось Оx является:
Исходя из вышесказанного, можно найти проекцию этой же силы на ось Оy:
AB является хордой, которая стягивает дугу.
В нашей задаче сосуд – это ёмкость цилиндрической формы с высотой H, внутренним давлением P, действующим на стенки, и нагрузкой q = p [Н/м 2 ].
Разделим цилиндр вдоль его диаметра.
Исходя из этого, равнодействующая результирующих сил определяется по формуле:
где d – это внутренний диаметр цилиндра, h — его высота.
Формулу также можно записать следующим образом:
Итак, почему баллон имеет способность разрываться? На его стенки действуют значения S1, S2, S3 (площади), а также F, p (плотность), h (высота цилиндра) и R (его радиус). Рассчитаем их по формулам:
Изобразим баллон в момент разрыва:
Учтём a – толщину ёмкости. Таким образом напряжение, которое растягивает баллон, (усилия распространяются в том числе на крышку и дно цилиндра) равно:
Важную роль при решении практических задач также играет эпюра распределенной нагрузки – плоская фигура, которая ограничена графиком. Величина, действующая на балку, называется интенсивностью – силой, которая распространяется на единицы площади, объема или длины.
💡 Видео
Определение усилий, напряжений и перемещений. СопроматСкачать
Тема 3. Нагрузки на элементы каркаса. Средняя составляющая ветровой нагрузки!Скачать
Собираем нагрузки на плиту перекрытияСкачать
Нагрузка, распределенная по дугеСкачать
Определение реакций опор в балке. Сопромат.Скачать
Нагрузка на полы склада. Точечная и распределенная нагрузка - в чем разница.Скачать
Основы Сопромата. Расчеты на прочность. Общая идеяСкачать
Максимальный момент от распределенной нагрузки однопролетной балкиСкачать
Монолитное перекрытие. Расчет на изгибСкачать
Сбор нагрузокСкачать
Составная рама с распределенной нагрузкойСкачать
Статический расчет балки с распределенной нагрузкой аналитическим методомСкачать