расчет площади стабилизатора модели самолета

Видео:Котика ударило током, 10 т. ВольтСкачать

Котика ударило током, 10 т. Вольт

Расчет площади стабилизатора модели самолета

Каждому моделисту, после того как он научился строить модели по готовым чертежам, захочется конструировать свои собственные модели.

Для того чтобы проектировать сложные модели своей соб­ственной конструкции, надо изучить довольно трудную теорию полета, так называемую аэродинамику. Моделист, осо­бенно если он еще очень молод, не сумеет разобраться в этой теории; у него может получиться впечатление, что, пока он не подрастет, ему надо довольствоваться копированием чужих моделей.

Это не совсем верно. При проектировании моделей можно обойтись и без знания теории, если хорошо знать, какие при­мерно соотношения частей модели нужно выбирать, чтобы она получилась хорошей. При выборе соотношений мы используем тот опыт, который накопился у советских моделистов. Величины, приведенные ниже,’—это самые лучшие соотношения частей модели, разработанные теоретически и проверенные на практике. Усвоив эти данные и применяя их, можно избежать грубых ошибок. Добиться хороших полетных результатов будет легко, если читатель усвоил хорошо то, что рассказано о регулировке моделей.

Прежде всего нужно знать, что для различных типов моде­лей нужны и различные соотношения частей. Так, например, для сухопутных моделей, похожих на первую построенную нами, они одни, а для гидромоделей — другие. Поэтому там, где это необходимо, будем указывать, для каких типов моделей даются соотношения размеров.

Видео:ОШИБКА расчета СТАБИЛИЗАТОРА на взлете #shortsСкачать

ОШИБКА расчета СТАБИЛИЗАТОРА на взлете #shorts

Крылья

Основной размер, который надо выяснить прежде всего, — это размах крыльев. Этот размер считается основным, и по отношению к нему определяются главные размеры всех остальных частей. Главными мы их назвали потому, что для каждой детали достаточно найти главный размер и уже по отношению к нему определять все остальные.

Размах крыльев модели редко превосходит 1000 мм и редко бывает меньше 550—600 мм. Приняв размах модели за 100 про­центов, мы получим остальные соотношения.

Эти размеры будем считать главными для каждой части. Разберем подробнее все, что относится к крылу.

Видео:Самолет столкнулся или....Скачать

Самолет столкнулся или....

Форма крыльев.

На рис. 153 показаны пять форм крыла.

расчет площади стабилизатора модели самолета

Лучшей формой крыльев считается эллиптическая •— 5; хорошая форма трапецевидная с закругленными краями — 4 и 2 средняя по качествам — 3 и хуже всех — 1.

Вместе с тем из двух крыльев одинаковой площади лучшим будет относительно более длинное, то, у которого длина в большее число раз превосходит наибольшую ширину. В нашем примере из двух крыльев лучшим будет 2, а широкое и короткое крыло 1 много уступает ему.

Средним отношением размаха крыльев к наиболее широкому месту крыла надо считать 7. Для гидромоделей это отношение можно снижать до 6, но не ниже.

Говоря о форме и размерах крыльев, надо сказать о нервюрах. Вы уже знаете, что нервюры должны быть изогнутыми. Длина нервюры зависит от того, в каком месте она поставлена. Так, средняя нервюоа в крыле 4 будет самой длинной. Если же нервюру положить на стол, то место, удаленное от «носика» или начала нервюры на одну треть ее длины, окажется самым
высоким (рис. 154). Наибольшая высота нервюры над столом называется «стрелкой нервюры». Эта стрелка нервюры составляет от 1 до 1/18 длины нервюры. Больший прогиб (1) при­меняется для гидромоделей, где нужна большая подъемная сила, особенно в момент отрыва от воды, а меньший прогиб (1/18) — для моделей типа «утка» и других, летающих сравнительно быстро.

Видео:Крушение самолета. Жесткая посадка.Скачать

Крушение самолета. Жесткая посадка.

Стабилизатор

Стабилизатор по форме копирует крылья. Поэтому все, что сказано о крыльях, относится также и к стабилизатору, особенно для моделей типа «утка». Очень узкие стабилизаторы непрочны. Поэтому здесь отношение длины к ширине чаще всего бывает в пределах от 3 до 5.

Видео:Starting engine number 3 - AN-225Скачать

Starting engine number 3 - AN-225

Киль

Форма киля произвольна; чаще всего она приближается к треугольнику с закругленными краями. Важно лишь, чтобы по площади киль составлял несколько меньше половины ста­билизатора.

Видео:Как называются разные части самолёта #авиация #суперджетСкачать

Как называются разные части самолёта #авиация #суперджет

Винт

Лучше всего винты строить по готовым шаблонам. Поэтому расскажем, как, имея размеры шаблона для винта-прототипа, подсчитать их для винта другого диаметра. Это сделать очень просто: для этого все размеры винта-прототипа умножаются на отношение нового диаметра к старому. Так, например, если в каком-нибудь месте винта диаметром 350 мм указан размер 14 мм, то для винта диаметром в 500 мм этот размер должен быть равным: новый размер = (14Х500):v F 350= 20 мм.

Видео:Зачем самолеты ремонтируют скотчем? 🤷‍♂️ #shortsСкачать

Зачем самолеты ремонтируют скотчем? 🤷‍♂️ #shorts

Резиномотор

Определить заранее, какой резиномотор потребуется для модели, можно довольно точно, но это требует знакомства с графиками или с довольно сложными формулами. Поэтому чаще всего просто подбирают количество нитей и длину резиномотора в пределе регулировки готовой модели. Для начала применяют резиномотор такой же по числу нитей и по длине (того же размера и типа), что и у других моделей. Во время регулировочных полетов увеличивают число нитей, если мотор оказывается слабым для данного винта. Окончательные данные мотора выясняются не сразу и очень зависят от типа и веса модели, размеров винта и многого другого.

Видео:расчет однолонжеронного свободнонесущего крыла на прочность. Часть 1. Построение эпюрСкачать

расчет однолонжеронного свободнонесущего крыла на прочность. Часть 1. Построение эпюр

Определение веса модели и ее частей

П рактика показывает, что, как в авиации вообще, так и в моделизме, громадное значение имеет правильный выбор веса модели. Слишком легкие модели летают так же плохо, как и очень тяжелые. Правда, редко кто из моделистов строит слишком легкие модели. Наоборот, перетяжеляют свои модели очень многие. Чаще всего это происходит тогда, когда моделист не знает границ веса модели. Молодые моделисты часто забывают об этом, между тем выдержать заданный вес и определить необходимый вес очень нетрудно.

Определение веса всей модели (полетный вес)

Для определения полетного веса модели поступают так.

Определяют по чертежу площадь крыла в квадратных деци­метрах1. Умножают число полученных квадратных дециметров площади крыла на одно из чисел: 7, 8, 9, 10, 11 и 12. Полученный результат и есть вес модели в граммах.

Приведенные нами числа получены из опыта работы моде­листов.

Обычно модели имеют самые разнообразные размеры, а поэтому и равный вес. Ясно, что сравнивать их просто по весу нельзя, так как модель с большим весом вместе с тем имеет и большие размеры.

Все знают, что железо тяжелее, чем пух или пробка, но если взять маленький кусочек железа и большой кусок пробки, может оказаться, что пробка тяжелее. Поэтому, чтобы сравнить вес двух различных веществ, их берут в равных количествах по объему. Вес в граммах одного кубического сантиметра всякого вещества называется удельным весом, т. е. весом единицы объема. При таком способе сравнения результат будет верный — железо окажется тяжелее пуха.

Для сравнения моделей удельный вес находят так: делят вес модели в граммах на площадь крыльев в дециметрах. Полу­ченное число и есть удельный вес модели. Значит удельный вес равен весу модели в граммах, поделенному на площадь крыльев (в квадратных дециметрах)

Этот удельный вес чаще равен 8—10 г на квадратный деци­метр. Зная вес модели и площадь ее крыльев, мы сумеем опре­делить удельный вес. Нетрудно сделать и обратное: зная пло­щадь крыльев и желаемый удельный вес, определить вес всей модели. Для этого надо только перемножить их.

Так у нашей первой модели площадь крыльев равна 5,8 дм2.

Тогда полетный вес желателен от 8 X 5,8 = 46,4 г до 10 X 5,8 = 58 г. Зная это еще до начала постройки модели, во время постройки можно добиться того, чтобы вес получился не больше расчетного. Для этого нужно иметь весы, можно само­дельные, с монетами в качестве разновеса. Монеты в 1, 2, 3 и 5 копеек весят соответственно 1, 2, 3 и 5 г.

Но это еще не все. Предположим, моделист построил модель и она оказалась на 15 г тяжелее, чем нужно. Что же в этом случае делать? Самое правильное — взвесить каждую часть модели в отдельности и уже по ней судить, не тяжела ли будет модель’. Если -известно, что крылья должны весить 10 г, а в процессе постройки оказалось, что они весят 11 —12 г, можно своевременно принять меры — заменить лонжероны более легкими или немного подстрогать все детали и снять таким образом лишний материал.

Советуем каждому, построившему первую модель, руковод­ствоваться теми советами, которые даны, особенно в той части, где приведены правила запуска и регулировки. При постройке моделей, для которых мы не дали рабочих чертежей, надо делать такие чертежи самому, используя для этого все приведенные данные. Разбираться в чертежах моделисту так же необходимо, как и уметь хорошо владеть инструментом. Вначале надо как можно точнее придерживаться всех указаний, приведенных в книге. Когда же накопится опыт, можно переходить к самостоятельной работе и вводить свои усовершенствования.

Видео:У Кремля снесло строительные леса , обрушившие зубцы (Скачать

У Кремля снесло строительные леса , обрушившие зубцы (

Расчет площади стабилизатора модели самолета

расчет площади стабилизатора модели самолетарасчет площади стабилизатора модели самолетарасчет площади стабилизатора модели самолетарасчет площади стабилизатора модели самолетарасчет площади стабилизатора модели самолетарасчет площади стабилизатора модели самолетарасчет площади стабилизатора модели самолетарасчет площади стабилизатора модели самолета

Выбор основных параметров радиоуправляемой модели самолета
Обзоры — Теория и практика полетов
Автор: alldn

Если ты пока лишь начинаешь интересный и затратный путь в радиоуправляемый авиамоделизм, непременно решил строить модель самостоятельно и у тебя в голове периодически возникают вопросы – как выбирать профиль, как рассчитывать стабилизатор и какой ширины делать рули – то эта статья как раз для тебя!

Я вряд ли смогу построить твою модель вместо тебя и торжественно тебе ее вручить :-), но могу дать множество полезных советов и здравых идей относительно того, как и что делать для получения желанного положительного результата и главное — чего делать наверняка не следует.

Большая часть повествования будет относиться преимущественно к учебным моделям самолетов, которые обычно рекомендуют строить новичкам, хотя некоторые вещи (они будут особо отмечены) справедливы и для пилотажных моделей. Все повествования разбито на два вида информации – советы о том, как можно (надо) делать и советы о том, чего делать не надо.

Изготовление любой модели начинается с ее расчета. Расчет – не такая уж сложная вещь, тем более, что считать то надо всего ничего.

Подавляющее большинство авиамоделей проектируются и изготавливаются под конкретный двигатель или тип двигателей. Так как масса и мощность двигателя обычно связаны между собой, расчет модели может с одинаковым успехом производиться как по мощности двигателя, так и по его массе.

Даже если двигателя у тебя еще нет, а ты только собираешься купить его – узнать массу двигателя не составляет проблем (она всегда прописана в технических характеристиках на двигатель). К примеру, масса модельного ДВС кубатурой 2,5 миллилитра составляет от 200 до 250 грамм, масса 5 кубового ДВС – 300 грамм, масса 7,5 кубового – чуть больше 400 грамм. Если твоя модель будет электрическая – в качестве исходной массы для расчета бери массу электродвигателя вместе с ходовым аккумулятором.

Зная двигатель и его массу, можно сразу прикинуть полную массу будущей модели. Для 2,5 кубового двигателя массой 250 грамм масса учебной модели составит 700-800 грамм. Для 7,5 кубового ДВС массой 400 грамм масса модели составляет обычно чуть менее 2 Кг.

Теперь, зная массу будущей модели, находим ее основные геометрические размеры. В первую очередь – это размах и ширина крыла. Размах крыла связан с его шириной отношением, называемым «относительное удлинение крыла». У большинства моторных моделей удлинение имеет величину от 5 до 6 единиц. Т.е. если крыло имеет размах 1 метр, его ширина составляет 20 см. Чем больше удлинение крыла – тем лучше летает модель, но тем более высокие требования предъявляются к прочности конструкции крыла и маневренность модели падает. Именно поэтому на моторных моделях удлинение имеет сравнительно небольшое значение.

Размеры крыла увязывают с массой модели и желаемой нагрузкой на единицу несущей поверхности. Нагрузка на крыло обычно выражается в граммах на квадратный дециметр. Она определяет минимальную полетную скорость модели и ее стойкость к ветру. Чем меньше нагрузка – тем маневреннее модель и меньше ее минимальная полетная скорость, но тем сильнее ее сносит ветром. Для учебных, равно как и пилотажных моделей, нагрузку на крыло обычно стараются выбирать от 35 до 40 грамм на квадратный дециметр. Для небольших моделей с электрической тягой нормальной нагрузкой считается 20-25 грамм на дециметр квадратный.

Зная массу модели (предположим, у нас получилась масса 2 кг для 7,5 кубового ДВС) и желаемую нагрузку (пусть будет 40 гдм) находим размеры крыла. Делим 2000 грамм на 40 получаем 50 квадратных дециметров. Пусть удлинение крыла равняется 6. Тогда размах крыла равен корню из (50 умножить 6). Получаем 1,7 метра. А ширина равна 1,7/6 = 28 см.

Профиль. Для учебной модели выбираем простой плоско-выпуклый, типа Кларк-игрек. Он хорош тем, что просто в изготовлении – снизу крыло плоское, а значит, его можно собирать, положив на плоскую поверхность стола и собранное крыло будет достаточно ровным. Профиль такая штука, что заморачиваться с ним имеет смысл лишь на планерах, где аэродинамические качества имеют ключевое значение, и на спортивных моделях чемпионского уровня. Имеет значение толщина профиля.. Она обычно выражается в процентах – отношение длины профиля к его толщине в самом толстом месте. Для учебной модели толщину профиля желательно выбрать в районе 15%.

На моторных моделях, и в том числе пилотажных профиль имеет весьма второстепенное значение и от него требуется соблюдение лишь некоторых основных характеристик, зачастую – лишь технологичность изготовления. Но все же есть вещи, которых с профилем делать не стоит совершенно.

Ни в коем случае не следует делать профиль плоским, тем более на учебной модели. Модель, конечно, летать сможет. Но будет обладать совершенно ужасными срывными характеристиками, что будет приводить к тому, что при потере скорости при совершении виража или тем более какой либо фигуры пилотажа модель будет «сваливаться» — терять заданную траекторию полета, заваливаться на бок и сильно тяготеть к поверхности планеты. Это будет происходить оттого, что воздушный поток на малых скоростях и больших углах атаки будет срываться с острых кромок профиля и подъемная сила, удерживающая модель в воздухе, будет спонтанно исчезать. Со всеми вытекающими последствиями. Таким образом, профиль ни в коем случае не должен иметь острых кромок – обводы должны быть плавными и естественными, как у рыбы.

У пилотажных моделей применяют симметричные профили (одинаково выпуклые что сверху, что снизу) толщиной 15-20%. Это определяется условием достижения симметричности прямого и перевернутого полета, а так же эффективностью работы крыла на малых скоростях.

Стабилизатор.

У любой модели должен обладать определенными размерами и находиться на определенном расстоянии от центра тяжести модели. Площадь стабилизатора для обеспечения устойчивости должна составлять от 20 до 25% от площади крыла. У нас крыло имело площадь 50 квадратных дециметров, значит, стабилизатор должен иметь площадь от 10 до 12,5 квадратных дециметров. Удлинение стабилизатора, в отличие от крыла, может быть достаточно произвольным и не сильно влияет на летные свойства модели. Расстояние, на которое стабилизатор вынесен назад от центра тяжести (ЦТ) измеряется в единицах ширины крыла модели и обычно составляет от 2 до 2,5 значений ширины крыла. Ширина крыла у нас была, кажется, 28 см. Значит, стабилизатор будет вынесен от ЦТ на 70 см. Это расстояние от ЦТ до центра стабилизатора. ЦТ находиться в 30% ширины крыла, при условии, что крыло прямоугольной формы (для учебной модели обычно делают именно такие крылья, так как их делать проще), значит, от задней кромки крыла до центра стабилизатора мы получим 50 см.

Форму стабилизатора выбираем в меру своей испорченности. Можно примерно срисовать форму с фотографий других моделей, которых у тебя наверняка есть. Главное – чтобы площадь стабилизатора соответствовала расчетной. Небольшие ошибки приветствуются.

Профиль у стабилизатора на многих моделях, в том числе и пилотажных, обычно отсутствует. Стабилизатор представляет собой плоскую конструкцию, толщиной с толщину реек, из которых он изготовлен.

Аэродинамические рули.

Элероны на большинстве моделей идут вдоль всей заднее кромки крыла. Это определяет их простоту конструкции, возможность использования в качестве закрылков и работоспособность на малых полетных скоростях за счет обдува воздушным потоком от работающего двигателя.
На учебных моделях и моделях классического пилотажа площадь элеронов составляет 18 площади крыла. Так как крало у нас простое прямоугольное, отделяем от его ширины (28 см) 18 и получаем 3,5 см. Т.е. задняя часть крыла, полоска, шириной 3,5 см будет элеронами. Размеры элеронов можно увеличить до 16 ширины крыла, но тогда нужно будет чуть уменьшить их расходы (максимальные отклонения), особенно если модель учебная.

Элероны должны обладать высокой жесткостью на кручение. И еще они должны крепиться к крылу на шарнирах как минимум в трех точках, чтобы исключить прогиб.

Руль высоты обычно составляет 14 от площади стабилизатора. Киль модели обычно имеет площадь 12 площади стабилизатора, а руль направления на нем – 14 площади киля.

Типичные расходы (максимальные отклонения) всех рулей на учебной модели обычно составляет +-20 градусов.

Углы установки.

Стабилизатор и крыло большинства современных моделей крепятся в одной плоскости. Двигатель устанавливается на 1-2 градуса валом вправо и на 1-2 градуса валом вниз.
Если модель учебная, то крыло крепиться к верхней части фюзеляжа и угол выкоса двигателя вниз может достигать 3 градусов. Если модель без элеронов – то угол установки двигателя вниз можно увеличить до 5 градусов. Это повышает устойчивость модели по крену.

Ни в коем случае не рекомендуется устанавливать двигатель на учебной модели с нулевым выкосом или выкосом вверх. Это не только уменьшает устойчивость модели, но и увеличивает ее минимальную полетную скорость, что затрудняет успешное управление ею.

Расположение центра тяжести в определенном месте под крылом модели обеспечивается величиной выноса двигателя, как самого массивного элемента конструкции, вперед. Если не прибегать к методике расчета центра тяжести, которая основана на суммировании масс элементов, помноженных на их удаление от некой точки отсчета конструкции, а описывать ее мне лень и весьма небыстро, в первом приближении прикинуть величину выноса двигателя вперед можно примотав его (двигатель) скотчем к рейке и приделав к уже собранным остальным элементам конструкции, расположенных друг относительно друга так, как это будет на законченной модели. И подобрать такую длину рейки, когда цент тяжести находиться точно в 8,5 см (30% для крыла шириной 28 см) от переднего края крыла под ним.

В модели двигатель будет крепиться на мотораму, которая будет крепиться к моторному шпангоуту — прочной передней стенке фюзеляжа, сразу за которой будет топливный бак. Конструкцию топливной системы и принципы установки и настройки двигателя хорошо рассматривают другие статьи, напомню лишь, что крепление двигателя должно обеспечивать виброизоляцию двигателя от корпуса модели и в то же время быть жестким. Бак желательно тоже виброизолировать, иначе двигатель будет глохнуть чуть раньше, чем полностью израсходуется топливо.

Для учебной модели актуально такое крепление двигателя, когда глушитель расположен с левого или с правого боку от фюзеляжа. Это повышает вероятность сохранения целостности крепления глушителя к двигателю при аварийных встречах с планетой.

Собранная модель должна обладать необходимой прочностью и жесткостью. Перегрузки в обычном полете могут достигать 5g, а в экстремальном – до 10g.

Как бы ты там не делал свою модель, лучший способ убедиться в надежности – это проверить. Собираем модель до такого состояния, в котором она (предположительно) будет летать. Ставим бортовой аккумулятор, привинчиваем крыло, не забыв надеть на вал двигателя предварительно сбалансированный пропеллер (обе лопасти имеют одинаковую массу – чем одинаковее – тем лучше!). Пропеллер, кстати, должен располагаться на валу так, чтобы перед самым началом фазы сжатия ДВС он находился в горизонтальном положении. Чтобы не ломаться при посадках.

Итак, модель собрана и как бы готова к полету. Установи ее так, чтобы кончиками крыла она опиралась на два расставленных стула. Если сверху на модель положить груз, массой равный массе модели (2 Кг) и при этом крылья не начнут складываться и хрустеть – можно считать, что твоя модель способна выдерживать перегрузки до 4ж. Если не боишься – положи для верности сверху еще пару килограмм.

Стабилизатор. Не должен. Отваливаться, если взяв модель за фюзеляж, интенсивно помахать хвостом по воздуху.

Шасси, если таковое имеется, хотя для учебной модели оно зачастую излишне, так как мешает посадке в траву, должно так же выдерживать перегрузки. Представь себе, что твою модель подняли над землей на метр или около того, и плашмя бросили на твердый асфальт. Ну, как там шасси, не развалилось? Это я к тому, что даже у очень опытных пилотов посадка с плюханьем модель на асфальт с некоторой высоты является вполне штатной и нормальной. Далеко не всегда и не любую модель удается завести на полосу так, чтобы она плавно коснулась поверхности и из полета перешла в качение.

Еще крыло должно обладать жесткостью на кручение. Если взяв крыло за один из концов и попробовать покрутить им вокруг продольной оси крыла – происходить это должно с заметным усилием и минимальными отклонениями (не перестарайся! У нас нет цели раскрутить крыло, с дуру и сломать можно!).

Установке аппаратуры внутрь так же посвящено много статей, напомню лишь, что приемник должен располагаться позади аккумулятора, если смотреть по направлению полета модели, и ни в коем случае ни наоборот! При особо удачных ударах об землю бортовой аккумулятор часто разлетается на сильно помятые отдельные банки, нетрудно представить, что приемник от такого взаимодействия, если окажется на пути аккумулятора, просто взорвется, как куриное яйцо, которое пнул футболист! Приемник необходимо так же замотать в толстый слой поролона.

Обтягивать модель можно чем угодно, но поверхностный слой должен быть влаго- и малостойким. Выхлоп ДВС, даже если он летит, как тебе кажется, в бок от модели, за пару полетов непостижимым образом умудряется обгадить маслом всю поверхность модели, расположенную позади двигателя. Если модель обтянута бумагой – пропитай ее эпоксидным лаком. Или обтяни сверху канцелярским скотчем. А лучше – и то, и другое. Модель не чемпионская, за каждым граммом массы гнаться смысла нет, а вот повышать эксплуатационные характеристики весьма полезно для нервов.

По этой же причине, а еще потому, что модель учебная и может иногда больно стукаться об землю, крыло проще, быстрее и дешевле изготавливать из пенопласта. Естественно, с помещенным вовнутрь лонжероном необходимой прочности и обтянутое снаружи чем-либо. Такое крыло вырезается из цельного куска пенопласта при помощи терморезака.

Фюзеляж учебной модели проще делать в виде параллелепипеда. Куда уж проще – склеить вместе 4 вырезанных по размеру куска фанеры, чтобы получилась длинная труба квадратного сечения! По вкусу вклеиваем в нее шпангоуты (поперечные переборки), делаем необходимые отверстия. К задней части можно сделать сужение фюзеляжа.

Воздушный винт играет не последнюю роль в обеспечении летных характеристик модели. Любой ДВС позволяет устанавливать на него некоторый диапазон винтов, отличающихся шагом и диаметром. Как правило, с увеличением диаметра винта для заданного ДВС шаг винта уменьшается, и наоборот. Винт малого шага и большого диаметра обеспечивает хорошую тягу и малую полетную скорость. Учебная модель с таким винтом летит сравнительно медленно, позволяя неопытному пилоту успевать управляться с моделью. На пилотажных моделях такие винты полезны тем, что позволяют выполнять вертикальные фигуры, точно и быстро управлять скоростью полета модели (на малых оборотах винт малого шага работает как тормоз, не позволяя модели разгоняться). А высокая скорость для пилотажа не требуется. Винты малого диаметра и большого шага обеспечивают высокую полетную скорость. Такие винты позволяют модель противостоять довольно сильному ветру.

Окраска модели хотя и является исключительно делом испорченного вкуса владельца, имеет прямое отношение к возможностям модели в воздухе. Если модель будет плохо видно с земли, низ крыла не будет отличаться от верха, пилот вряд ли сможет результативно управлять ею стоя на земле!

Таким образом, окраска модели должна:
1 Быть хорошо видна издалека;
2 Низ модели должен отличаться от верха;
3 Если модель зеленого цвета, хорошенько подумай, затем еще раз подумай, а потом еще раз подумай, сколько времени тебе понадобиться на ее поиски, если она приземлиться в высокую траву на поле? Впрочем, если ты собрался летать исключительно зимой или вместо травы на вашем поле лишь голый асфальт, можно красить модель и в зеленый цвет.
Хорошо зарекомендовали себя следующие схемы окраски: красная сверху, черная или темно коричневая снизу, оранжевая и темно-серая, темно синяя и красная, желтая с черным. Различности низа верха можно так же достигнуть разницей рисунка сверху и снизу. Разница должна быть кардинальной – например, сверху крыло черное и желтое в центре, тогда снизу стоит сделать крыло желтым, с черной серединой. Желательно, если цветовая граница верха и низа будет проходить по передней кромке крыла. Это помогает различать положение модели, когда она летит строго на пилота (довольно частая ситуация). Как показывает практика, самой заметной окраской, различимой в любую погоду и все время года является ярко красная окраска без бликов. По возможности – флюресцентная.

Категорически не следует красить модель:
1 В светлые – белый, светло серый, светло коричневый или нежно голубой цвет. Их крайне плохо видно на фоне неба;
2 В блестящий (отражающий) серебристый или золотистый цвет – их ВООБЩЕ не видно на фоне неба, к тому же, они дают сильные блики на солнце и периодически ослепляют пилота, затрудняя визуальный контакт с моделью;

Даже если у вас отличное зрение и вы гоняете модель лишь на небольшом удалении от себя – максимально заметная окраска улучшает видимость модели и позволяет выполнять пилотирование более точно, что, естественно, имеет ключевое значение на соревнованиях. Ну и для души приятно! Ведь модель, прежде всего, должна нравиться владельцу!

Видео:Делаем самолет ЯК-18Т Стабилизатор (часть 15)Скачать

Делаем самолет ЯК-18Т  Стабилизатор  (часть 15)

Расчет площади стабилизатора модели самолета

Центр тяжести (Ц.Т), Центр масс самолёта (на английском Centre of mass, COG) это «воображаемая» точка в которой пересекаются 3 оси вращения самолёта (X,Y,Z). расчет площади стабилизатора модели самолета Центр тяжести может менять своё местоположение при изменении загрузки самолёта (например смена аккумулятора, установка камеры на нос самолета и т.д.). Когда центр тяжести смещается за максимально допустимые пределы, для данной модели, самолёт теряет свою былую управляемость, вплоть до полной потери управления.

Перед тем как приступить к первому запуску авиамодели необходимо «вывести» центр тяжести в нужное место, обычно этот процесс называют — центровка модели. Понятие «нужное место» весьма индивидуально, как для пилота, так и для типа самолета (пилотажная или планер).

Если Вы купили готовый к запуску самолет, то в инструкции найдете примечание, что центр тяжести находится, например, в 36 миллиметрах от передней кромки. Или в 60 мм от задней кромки (The center of gravity is measured 60 mm back from the leading edge of the main wing). Или от носа самолета 384 мм.

Отмеряете нужное расстояние и маркером отмечаете(точкой) Ваш центр тяжести. Каждый раз перед запуском, «снарядив» и включив самолет, убеждаетесь, что центр тяжести на своем месте.

Тут каждый сантиметр смещения имеет большое значение.

«Центровка модели» измеряется в процентах от средней аэродинамической хорды (САХ). Кратко САХ (например для прямоугольного крыла) — это расстояние от передней кромки крыла, до задней. Принято считать 10% — 22% передней центровкой, 20% — 25% задней центровкой

расчет площади стабилизатора модели самолета

Цель центровки тренера — это разместить центр тяжести готового самолета на расстоянии 10% — 22% от передней кромки крыла. Пример 15%: если ширина прямоугольного крыла 200 мм то 15% будет составлять 30 мм от передней кромки крыла.

Как находить центр тяжести у Простого прямоугольного крыла. Берем левую (или правую) половину крыла и делим ее пополам, прочерчиваем линию (на крыле) вдоль фюзеляжа самолета. Такое же действие проделываем и с второй половиной крыла. Вот эта линия называется средней аэродинамической хордой. Отмерив от передней кромки линий САХ (ранее проведенных) нужный Вам процент расстояния, соединяем отмеренные точки горизонтальной линией проходящей через центр крыла. Там, где центр крыла пересекла горизонтальная линия и будет располагаться нужный центр тяжести.

расчет площади стабилизатора модели самолета

Там, где центр крыла пересекла горизонтальная линия и будет располагаться нужный центр тяжести. Устанавливаем крыло на модель, загружаем самолет, как перед запуском, и «двигаем» центр тяжести всеми возможными методами. Без увеличения веса модели сдвинуть Ц.Т. удобно самым тяжелым элементом модели — аккумулятором. Аккумулятор не должен «гулять» по модели, поэтому так популярно крепление для батарей — липучка, как на обуви с клеящейся поверхностью с другой стороны. В случае не возможности центровки только одной батареей (или увеличением батареи), прибегают к использованию грузов-противовесов, но утяжеление самолета это другая тема.

Центровка сильно влияет на управляемость самолетом в воздухе. Различают 2 вида центровки: Передняя центровка, Задняя центровка.

расчет площади стабилизатора модели самолета

Передняя центровка — обеспечивает самолету хорошую продольную/колебательную (колебания вверх-вниз) устойчивость (см. картинку выше). Уменьшится маневренность (фигура петля — будет иметь больший радиус), устойчивость обеспечится даже при движении против порывов ветра, но планировать модель будет хуже. Нос будет стремиться вниз, потребуется корректировка полета рулем высоты. Сбросив обороты, перед посадкой, нос еще сильнее потянет к земле и со снижением скорости даже максимальное отклонение руля высоты не сможет выровнять самолет в горизонт.

Задняя центровка — обеспечивает самолету продольную/колебательную (колебания вверх-вниз) неустойчивость (см. картинку выше), которая необходима для маневренности. По оси Z (фигура «петля») модель сможет развернуться на 360 градусов практически с нулевым радиусом, просто «кувыркнувшись» относительно центра тяжести. расчет площади стабилизатора модели самолетаВ таких моделях площадь отклоняемых поверхностей стабилизатора (руль высоты) и руля поворота значительно выше чем у тренеров, планеров. Так же широко используется функция «Расходы» на пульте управления. При задней центровке самолет может задирать нос, выходя на кабрирование (см. картинку первый фрагмент) терять скорость, падать вниз. Набрав скорость при падении, снова задирать нос.

Центровка модели — это процесс выбора золотой середины между неуправляемой устойчивостью и между неустойчивостью обеспечивающая маневренность.

🎥 Видео

Расчёт и построение аэродинамических профилей на примере профиля N.A.C.A.Скачать

Расчёт и построение аэродинамических профилей на примере профиля N.A.C.A.

Ил-76 ПРОТИВ Коротких ВПП #shortsСкачать

Ил-76 ПРОТИВ Коротких ВПП #shorts

РАЗРАБАТЫВАЕМ И СТРОИМ НАСТОЯЩИЙ САМОЛЕТСкачать

РАЗРАБАТЫВАЕМ И СТРОИМ НАСТОЯЩИЙ САМОЛЕТ

Самая МЯГКАЯ посадка САМОЛЁТА #shortsСкачать

Самая МЯГКАЯ посадка САМОЛЁТА #shorts

Турбулентность / Ссылка на полное видео в комментарияхСкачать

Турбулентность / Ссылка на полное видео в комментариях

Самолёт по-дешману. #10. Модель и поясненияСкачать

Самолёт по-дешману. #10. Модель и пояснения

Cамолёт из БУДУЩЕГО. Концепт 2050 ГОДА #shortsСкачать

Cамолёт из  БУДУЩЕГО. Концепт 2050 ГОДА #shorts

Начальный этап проектирования самолетаСкачать

Начальный этап проектирования самолета

Аэродинамика для всеx - Часть 3 Центровка, Органы управленияСкачать

Аэродинамика для всеx - Часть 3 Центровка, Органы управления

Центровка авиамоделиСкачать

Центровка авиамодели
Поделиться или сохранить к себе: