расчет площади пика хроматограммы

Содержание
  1. Параметры хроматографических пиков
  2. Главные параметры пиков
  3. Типы хроматографических пиков
  4. Автоматическая разметка пиков
  5. Ширина
  6. Пороги
  7. Ручная разметка пиков
  8. Идентификация пиков
  9. Идентификация по абсолютному времени удерживания
  10. Идентификация по относительному времени удерживания
  11. Идентификация по относительному объему удерживания
  12. Идентификация по времени удерживания и соотношению интенсивностей пиков на параллельно (последовательно) работающих детекторах
  13. Идентификация по индексам удерживания (Ковача)
  14. Идентификация по температурам кипения
  15. Основные Параметры Хроматографических Пиков
  16. Что такое хроматографический пик
  17. Автоматическая и ручная разметка пиков
  18. Как идентифицировать пики
  19. Заключение
  20. Хроматография (ОФС.1.2.1.2.0001.15). Методы, параметры
  21. ХРОМАТОГРАММА И ХРОМАТОГРАФИЧЕСКИЕ ПАРАМЕТРЫ
  22. Интерпретация хроматографических данных
  23. РАСЧЕТ СОДЕРЖАНИЯ ОПРЕДЕЛЯЕМЫХ ВЕЩЕСТВ
  24. РЕКОМЕНДАЦИИ ПО РАЗМЕТКЕ И ИНТЕГРИРОВАНИЮ ХРОМАТОГРАММ ПРИ ОПРЕДЕЛЕНИИ ПРИМЕСЕЙ
  25. ОЦЕНКА ПРИГОДНОСТИ ХРОМАТОГРАФИЧЕСКОЙ СИСТЕМЫ
  26. Требования к прецизионности системы в условиях повторяемости при количественном определении основного вещества в субстанциях
  27. КОРРЕКТИРОВКА УСЛОВИЙ ХРОМАТОГРАФИРОВАНИЯ
  28. Тонкослойная и бумажная хроматография
  29. Жидкостная хроматография: изократическое элюирование
  30. Жидкостная хроматография: градиентное элюирование
  31. Газовая хроматография
  32. Сверхкритическая флюидная хроматография
  33. 🔥 Видео

Видео:Хроматэк Аналитик 3.1. Создание метода с градуировкойСкачать

Хроматэк Аналитик 3.1. Создание метода с градуировкой

Параметры хроматографических пиков

Процесс обработки хроматографического сигнала состоит из нескольких этапов: фильтрация шумов, разметка пиков, идентификация пиков, градуировка, количественный расчет. В этой статье мы рассмотрим один из наиболее важных вопросов — разметку пиков и их основные параметры. Мы расскажем как происходит разметка пиков на примере программы NetChrom, разработанной компанией «Мета-хром».

  • Главные параметры пиков
  • Типы хроматографических пиков
  • Автоматическая разметка пиков
  • Ручная разметка пиков
  • Идентификация пиков:
    • по абсолютному времени удерживания
    • по относительному времени удерживания
    • по относительному объему удерживания
    • по времени удерживания и соотношению интенсивностей пиков на параллельно (последовательно) работающих детекторах
    • по индексам удерживания (Ковача)
    • по температурам кипения

Видео:Хроматэк Аналитик 3.1. ИнтегрированиеСкачать

Хроматэк Аналитик 3.1. Интегрирование

Главные параметры пиков

Разметка пиков (интегрирование) — операция вычисления параметров пиков, полученных на хроматограмме путем определения характерных точек (начало, вершина и конец пика). При этом пики ограничиваются базовой линией (прямой, соединяющей точки начала и конца пика на нулевой линии), которая проводится по методу «резиновой ленты», натягивающейся снизу от точки начала до точки конца базовой линии на протяжении всей хроматограммы.

На основании вычислений оцениваются основные параметры пика:

  • время удерживания — время от начала анализа до максимума пика;
  • площадь — область, заключенная между пиком и ограничивающей его базовой линией;
  • ысота — расстояние между базовой линией и максимумом пика;
  • ширина пика на половине его высоты.

расчет площади пика хроматограммы

Важно! Особенностью программы NetChrom является полностью автоматизированный процесс ее настройки под конкретный хроматографический сигнал, непрерывное отслеживание изменения характеристик хроматографического сигнала в ходе обработки хроматограммы: уровня шумов и дрейфа, а также уровня самого сигнала.

Для определения характерных точек пиков: начала, конца и вершины — в программе NetChrom используется алгоритм на основе вычисления первой сглаженной производной хроматографического сигнала, скорректированной на дрейф базовой линии.

При превышении или достижении определенного уровня этой производной, называемой порогом, определяются характерные точки пиков. Уровень порога определяется на основе шума производной на участках хроматографического сигнала, свободного от пиков.

Кроме уровня шума, дрейфа и уровня сигнала, большое значение имеет также зависимость изменения ширины хроматографических пиков от времени их удерживания в процессе анализа (ширина пика в начале и в конце анализа).

Как известно, ширина хроматографических пиков непрерывно увеличивается в процессе анализа, причем в изотермическом режиме эта зависимость имеет линейный характер, в режиме программирования температуры колонок эта зависимость имеет более сложный характер. Программа использует эту зависимость для автоматической настройки программных фильтров под хроматографический сигнал во время анализа.

Кроме этого, пользователю предоставлена возможность сформировать или отредактировать зависимость изменения ширины хроматографических пиков от времени удерживания самостоятельно (ширина пиков в начале и в конце хроматограммы).

При неправильном задании этой зависимости возможно некорректное определение характерных точек пика и даже пропуск небольших пиков. Зависимость изменения ширины хроматографических пиков от времени индивидуальна для каждого метода, и после изменения условий анализа: температуры колонок, расхода газоносителя и др., необходимо откорректировать зависимость.

Видео:Хроматэк Аналитик 3.1. Расчёт среднихСкачать

Хроматэк Аналитик 3.1. Расчёт средних

Типы хроматографических пиков

Пики могут быть нескольких типов:

  • простые пики — начало и конец пика принадлежат базовой линии;
  • хвостатые пики — асимметрия заднего фронта пика;
  • пики наездники — пики на хвосте большего по величине пика;
  • неразделенные пики — конец первого пика совпадает с началом второго и эта точка не принадлежит базовой линии;
  • зашкаленные пики — пики с плоской вершиной.

Разделение слившихся пиков производится по перпендикуляру или тангенте в зависимости от соотношения ширины и высоты этих пиков.

Пики наездники отделяются по тангенте и площадь под ними включается в площадь хвостатого пика.

Следует иметь в виду, что никакой алгоритм не может в ряде случаев гарантировать корректную разметку на пики, поскольку само понятие «пик» во многом субъективно и зависит от конкретной аналитической задачи. Например, нельзя гарантировать корректную разметку на пики при сложной форме базовой линии, плохом разделении хроматографических пиков, малых пиках-наездниках, высоком уровне шумов и так далее.

При этом правильность получаемых результатов зачастую зависит от опыта пользователя. В программе NetChrom реализованы два подхода для проведения разметки пиков:

  1. автоматическая разметка пиков;
  2. ручная (графическая) разметка пиков.

Ниже мы рассмотрим каждый из подходов более детально.

Видео:Хроматография. Часть 1.Скачать

Хроматография. Часть 1.

Автоматическая разметка пиков

Автоматическая разметка пиков (интегрирование) имеет смысл тогда, когда ожидается обработка серии хроматограмм со сходными, повторяющимися особенностями базовой линии, значениями величины и последовательностью хроматографических пиков.

Параметры интегрирования, с помощью которых пользователь может влиять на процесс обнаружения пиков на хроматограмме, представлены ниже:

Ширина

расчет площади пика хроматограммы

Пороги

Порог обнаружения пиков может быть задан по двум параметрам: минимальной площади и минимальной высоте пика.

Минимально допустимая площадь детектируемого пика. При детектировании пиков имеется возможность не размечать или подавлять пики, площадь которых меньше заданной. При этом значение параметра, равное 0, означает, что подавление пиков выключено.

расчет площади пика хроматограммы

  • Минимальная высота

Минимально допустимая высота детектируемого пика. Подавление пиков с высотой значение которой, меньше заданного. При этом значение параметра, равное 0, означает, что подавление пиков выключено.

расчет площади пика хроматограммы

Не всегда получается подобрать одинаковые параметры для разметки всех пиков. Например, с увеличением времени выхода пика, изменяется его ширина, поэтому значения параметров, подходящие для пиков в начале хроматограммы, могут не подходить для пиков в ее конце. В таких случаях рекомендуется использовать события интегрирования.

Настройка алгоритма разметки с использованием событий интегрирования имеет смысл, если ожидается серия однотипных хроматограмм со сходными, повторяющимися особенностями базовой линии. События интегрирования позволяют настроить процесс разметки в соответствии с особенностями данной серии хроматограмм, задавая для некоторых участков хроматограмм индивидуальные параметры и правила разметки.

Событие можно задать для отдельного детектора, и оно начинает действовать с указанного момента времени до тех пор, пока не будет переопределено другим событием такого же типа, или пока не завершится хроматограмма. Если не удается добиться желаемой разметки при использовании параметров и событий интегрирования, используют ручное графическое интегрирование (непосредственно на графике хроматограммы).

Видео:Хроматография. Основные параметрыСкачать

Хроматография.  Основные параметры

Ручная разметка пиков

Ручная разметка пиков используется, если не удается добиться желаемой разметки при использовании параметров автоматической разметки. Ручная графическая разметка пиков производится непосредственно на графике хроматограммы. При этом все действия, выполняемые пользователем, относятся к выделенному фрагменту хроматограммы или к выделенному пику. В программе существуют следующие типовые операции по ручному редактированию пиков на хроматограмме:

  • создание пика;
  • разделение пика;
  • слияние пиков;
  • корректировка положения характерных точек пика;
  • задание пика наездником;
  • задание пика хвостатым;
  • задание пика базовым;
  • задание пика слившимся;
  • удаление пика;
  • удаление пиков справа;
  • удаление пиков слева;
  • удаление всех пиков.

Видео:Газовая хроматография, расчеты по ГОСТСкачать

Газовая хроматография, расчеты по ГОСТ

Идентификация пиков

Идентификация — отнесение пиков на хроматограмме к тому или иному компоненту из списка компонентов рабочего метода. При этом производится сравнение рассчитанных параметров удерживания всех обнаруженных на хроматограмме пиков с информацией, хранящейся в таблице компонентов. Идентификация компонентов по одному или по нескольким детекторам осуществляется следующими способами:

  1. по абсолютному времени удерживания;
  2. по относительному времени удерживания;
  3. по относительному объему удерживания;
  4. по времени удерживания и соотношению интенсивностей пиков на параллельно (последовательно) работающих детекторах;
  5. по индексам удерживания (Ковача);
  6. по температурам кипения.

Теперь рассмотрим каждый из вышеперечисленных способов подробнее.

Идентификация по абсолютному времени удерживания

Наиболее простой способ идентификации — по времени удерживания, то есть сравнение времени удерживания анализируемого компонента со временем удерживания известного соединения при строго заданных условиях анализа. Для проведения идентификации пика по времени удерживания в библиотеке компонентов должна содержаться информация:

  • наименование компонента;
  • время удерживания;
  • окно поиска по времени (в единицах времени).

Окно поиска — границы области, в которой будет осуществляться поиск пика как в положительную, так и в отрицательную сторону от заданного в таблице параметра удерживания.

При задании окна необходимо стремиться, чтобы его ширина была достаточной для попадания пика в окно при неизбежных изменениях времени удерживания, но и не слишком большой, чтобы в него не попадали соседние пики.

В случае если в окно поиска попадают несколько пиков, то среди них выбирается пик, имеющий максимальную вероятность идентификации (наиболее интенсивный или ближайший к библиотечному времени).

Идентификация по относительному времени удерживания

При изменении условий в процессе анализа (расход газа-носителя, температура колонки), а также в процессе «старения» колонок, пики могут не попасть в окно поиска. Это происходит чаще всего:

  • когда нельзя задать достаточно широкое окно поиска, чтобы в него не попали соседние пики;
  • при длительных анализах с программированием температуры колонок, когда время удерживания может измениться в большей степени.

Выход из положения состоит в том, что один из пиков (или несколько) назначается «стандартом времени», для него задается увеличенное окно поиска (2-5%), а для остальных пиков рассчитывается относительное время удерживания.

Стандартом времени, как правило, выбираются стоящие отдельно или большие пики обязательно присутствующие на хроматограмме. Таким образом, при одновременном сдвиге по той или иной причине времен удерживания всех компонентов, наличие пиков-стандартов времени поможет правильно идентифицировать вещества, несмотря на то, что их время удерживания не будет попадать в окно поиска по времени.

В этом случае идентификация производится следующим образом:

  • производится поиск пика стандарта времени по времени удерживания;
  • для стандарта времени удерживания рассчитывается коэффициент отклонения реального времени удерживания по сравнению с библиотечным временем по формуле:

расчет площади пика хроматограммы

для остальных пиков рассчитывается ожидаемое время удерживания, исходя из времени, заданного в библиотеке для данного компонента, и рассчитанного коэффициента отклонения времени стандарта по формуле:

расчет площади пика хроматограммы

Идентификация по относительному объему удерживания

Является более точным расчетным параметром по сравнению с относительным временем удерживания, так как в нем учитывается время на прохождение подвижной фазой расстояния от устройства для ввода пробы до детектора (иногда это время называют «мертвым» временем или временем удерживания несорбирующегося вещества).

При этом относительный объем удерживания стандарта времени принимают за единицу, а относительный объем удерживания компонентов (Ri) рассчитывают по формуле:

расчет площади пика хроматограммы

T уд i — время удерживания анализируемого компонента;

T уд.ст. — время удерживания стандарта времени;

T м — мертвое время.

Идентификация по времени удерживания и соотношению интенсивностей пиков на параллельно (последовательно) работающих детекторах

Если в процессе анализа используются несколько (чаще всего два) параллельно или последовательно работающих детектора, то для более достоверной идентификации можно применить способ идентификации, заключающийся в том, что наряду со временем удерживания (абсолютным или относительным), можно использовать отношение интенсивностей пиков соответствующих детекторов.

Вначале пик идентифицируется по времени удерживания на ведущем детекторе (детекторе, по интенсивности пика которого рассчитывается концентрация компонента). Затем сравниваются отношения интенсивностей пика на различных детекторах с библиотечным отношением.

Для идентификации может использоваться не только отношение интенсивностей, но также наличие или отсутствие пика на другом (не ведущем) детекторе.

Идентификация по индексам удерживания (Ковача)

Для идентификации могут использоваться и другие относительные параметры удерживания, которые в меньшей степени зависят (в отличие от времени удерживания) от условий анализа. Одним из таких параметров является индекс удерживания — безразмерная величина, характеризующая положение пика вещества на хроматограмме относительно пиков выбранных стандартов.

Если в качестве стандартов используются насыщенные углеводороды (алканы, парафины), то индекс удерживания называется индексом Ковача. Выбор типа индекса (линейный или логарифмический) зависит от условий анализа.

Для постоянной температуры колонки во время анализа характерна логарифмическая зависимость, при программировании — линейная. Однако между этими двумя зависимостями нет четкого разделения, поэтому при применении режима программирования температуры колонок с начальным изотермическим участком, используется смешанный тип индекса. При этом на изотермическом участке выбирается логарифмический тип индекса, до первого реперного пика, который попадает на участок программирования температур, и в дальнейшем — линейный тип индекса.

Начало программирования температуры колонок выбирается согласно заданным параметрам управления соответствующего метода. При идентификации по индексам удерживания в таблицу компонентов должны быть занесены табличные значения индекса компонентов и ширина окна поиска по индексу. Пикам – стандартам индексов удерживания необходимо присвоить тип: реперный в таблице компонентов и задать увеличенное окно поиска (2-5%) от времени удерживания.

Идентификация по индексам удерживания производится следующим образом:

  • Производится идентификация реперных пиков по времени удерживания.
  • Реперным пикам присваиваются соответствующие индексы из таблицы компонентов.
  • Используя индексы удерживания реперных пиков, рассчитываются индексы удерживания обычных пиков и сравниваются с табличными данными.

Индексы удерживания Ковача рассчитываются по формулам:

линейный индекс удерживания:

расчет площади пика хроматограммы

логарифмический индекс удерживания:

расчет площади пика хроматограммы

Ii — время удерживания интересующего пика;

In, In+1 — индексы предыдущего и последующего компонентов с известной величиной индекса;

ti — время удерживания интересующего пика;

tn, tn+1 — времена удерживания пиков, соответствующие предыдущему и последующему компонентам с известными индексами;

t’. — приведенное время удерживания.

Важно! Для увеличения точности расчета индексов удерживания в качестве времени удерживания необходимо брать приведенное время удерживания. Приведенное время удержания равно разности абсолютного времени удержания и мертвого времени (времени нахождения неудерживаемого компонента в хроматографической системе).

Мертвое время определяется либо экспериментально, либо расчетом, выполненным с помощью газового калькулятора. В качестве неудерживаемого компонента чаще всего используют метан.

В окно ожидаемого времени или индекса удерживания одного компонента может попасть несколько пиков. В этом случае выбор пика, в зависимости от настройки, может осуществляться по следующим критериям:

  • ближайший к ожидаемому (библиотечному) времени или индексу удерживания;
  • максимальный по высоте;
  • максимальный по площади.

Один и тот же пик может попасть в окна поиска разных компонентов, в этом случае необходимо уменьшить ширину окон поиска.

Указанная схема распознавания (идентификации) компонентов оказывается достаточно универсальной и гибкой для того, чтобы проблема корректного распознавания пиков в подавляющем большинстве случаев было решена. Все, что требуется от оператора — на этапе настройки грамотно выбрать пик стандарта времени или реперные пики и в дальнейшем периодически корректировать их ожидаемые времена удерживания по текущей хроматограмме.

Идентификация по температурам кипения

Частным случаем расчета индексов удерживания является расчет температур кипения. При расчете температур кипения используются те же формулы, что и при расчете индексов. Для расчета температур кипения необходимо в библиотеке методов выбрать тип индекса (линейный или логарифмический) и задать известные температуры кипения реперных компонентов.

Видео:[Запись 2022 г] Введение в хроматографию, основы газовой хроматографииСкачать

[Запись 2022 г] Введение в хроматографию, основы газовой хроматографии

Основные Параметры Хроматографических Пиков

расчет площади пика хроматограммы

расчет площади пика хроматограммы21.01.2021

Ключевую для хроматографии информацию получают при анализе пиков на полученной диаграмме. Хроматограммы бывают двух видов: полученные при планарной хроматографии или при жидкостной. Во втором случае, как правило, анализ проводится специальным детектором, анализирующем проходящую через колонку смесь.

Видео:Ошибки при построении градуировкиСкачать

Ошибки при построении градуировки

Что такое хроматографический пик

Хроматографический пик представляет собой резкое возрастание концентрации вещества с последующим уменьшением до базовой линии. Происходит это в момент прохождения вещества через детектор. Пики тем четче, чем больше разделительная способность системы и чем сильнее различаются свойства компонентов смеси, и в теории представляют собой гауссовские кривые.

Различные вещества имеют различные пики ввиду индивидуальных свойств. Вследствие неоднородной реакции с подвижной фазой время прохождения через колонку компонентов разнится. Каждый пик на диаграмме отражает отдельное вещество или группу веществ, прошедших колонку за определенное время.

Время прохождения вещества зависит от его сродства к подвижной и неподвижной фазе. Само же сродство определяется протекающими между веществом и фазами реакциями, размером компонента смеси, температурой и скоростью элюента. Поэтому, для каждой системы абсолютное время прохождения веществ разное, и зависит от каждого параметра анализа.

После установки основных характеристик пиков — время удерживания, высота и площадь пика – переходят к их соотношению. Отношение площадей пиков равно отношению количеств веществ компонентов смеси.

Высота пика в случае с гауссовскими кривыми также может отражать относительное содержание вещества в пробе. Это применимо для неперекрывающихся симметричных пиками. В противном случае расчеты, основанные на высоте пика, ведут к ошибкам.

Ширина пика показывает эффективность хроматографической системы, ведь чем больше ширина пика, тем хуже полученные данные о его площади. Чем меньше в смеси примесей и чем больше степень разложения на компоненты, тем эффективнее анализ. Ширина также увеличивается в процессе анализа. При постоянной температуре это происходит линейно.

На практике полученные диаграммы содержат отклонения от теоретических расчетов. Причина этому реакция среды, наличие примесей, изменение температуры во время анализа, схожие свойства самих веществ. Пики могут накладываться друг на друга, быть ассиметричной формы. Чем дольше идёт анализ, тем шире они становятся. Расчеты, основывающиеся на высоте асимметричных пиков, ведут к ошибкам, ведь они больше не отражают реальной концентрации.

Пики отделяются от шумов, которые возникают при детальном рассмотрении базовой линии. Как и любое другое электрическое устройство, хроматограф имеет отклонения показаний в одну и другую сторону. Чем меньше выбранный промежуток времени, тем менее заметны сами шумы.

Видео:Хроматэк Аналитик 3.1. Создание метода с нормализациейСкачать

Хроматэк Аналитик 3.1. Создание метода с нормализацией

Автоматическая и ручная разметка пиков

Ввиду того, что теоретически число пиков неограниченно, необходимо отделять пики от шумов. Делать это можно как вручную, так и при помощи специальных программ. Автоматизация уместна в случае с большим количеством сходных хроматограмм. При этом для каждой серии анализов требуется индивидуальная настройка.

В первую очередь подавляются шумы. Происходит это при помощи введения порогового значения для высоты и площади пиков. Так, зная степень разделения смеси средой, вводят минимальную высоту. А на основании данных об ориентировочном содержании веществ вводится минимальная площадь.

После назначения порогов назначается эталонная ширина пика. От этого параметра зависит, какая часть пика будет интегрироваться. Пики с меньшей шириной также автоматически отсеиваются. Этот процесс облегчает дальнейший анализ и упрощает полученные данные.

Подбор этих значений должен производиться с расчетом на то, что со временем анализа пики расширяются. Имеет смысл деление хроматограммы на участки с индивидуальными параметрами разметки. Подбор специальных значений для порогов и ширины пиков повышает качество полученных данных.

К ручной разметке прибегают в случаях, когда автоматизация не предоставляет искомой точности. Исследователь собственноручно выделяет необходимые пики, однако последующий подсчет площади под ними производится автоматически. Идентифицировать вещества по их пикам же все равно приходится вручную.

Видео:Хроматэк Кристалл: Детектор ПФДСкачать

Хроматэк Кристалл: Детектор ПФД

Как идентифицировать пики

После выделения пиков производится идентификация, соотношение сигналов с веществами, которые их дали. Достичь качественного результата позволяет сравнение со стандартным образцом. Однако доказать наличие конкретного вещества сложнее, чем доказать его отсутствие. Ведь если пик на характерной для определенного вещества отметке отсутствует, то это однозначно говорит об отсутствии самого вещества, а его наличие может свидетельствовать о смеси других веществ с аналогичными свойствами.

Зафиксировав четыре абсолютных значения, производят анализ как на непосредственно полученных данных, так и на относительных величинах. Минусом абсолютных значений является высокая чувствительность к колебаниям таких параметров как температура и скорость подвижной фазы, что приводит к неточностям и необходимости многократных анализов.

Простейшим методом идентификации является соотношение времени удерживания вещества в пробе и в стандарте. Сопоставив полученные и библиотечные времена удерживания, делают вывод о наличии или отсутствии искомых веществ. Для подтверждения точности полученных данных результаты должны быть повторяемы.

Для получения более точных результатов прибегают к измерению относительного объема удерживания. Здесь учитывается время прохождения колонки подвижной фазы. Объем удерживания, в отличие от времени удерживания, не зависит от скорости потока, что и делает этот параметр универсальной характеристикой. Иногда прибегают к комбинированию детекторов. Сравнив пики на нескольких хроматограммах, делают вывод о свойствах вещества. Наличие пиков на одних и отсутствие на других детекторах помогает идентифицировать вещество.

Видео:Хроматэк Аналитик 3.1 НастройкиСкачать

Хроматэк Аналитик 3.1 Настройки

Заключение

Несмотря на то, что зачастую пики не соответствуют гауссовским кривым, идентификация возможна и в сложнейших случаях. Современные библиотеки располагают количеством информации, которое позволяет точно определять искомые вещества даже в смеси со схожими свойствами компонентов.

Автоматизированная разметка пиков и их интегрирование снимает с работающего за хроматографом нагрузку, облегчая аналитическую задачу и повышая эффективность процесса. Заглушая шумы и считая площади пиков, программное обеспечение снижает общее время анализа.

Проведенный анализ позволяет дать количественную характеристику изучаемой смеси, обнаружить в ней искомые вещества, что делает хроматографию востребованной во многих сферах.

расчет площади пика хроматограммы

расчет площади пика хроматограммы

Генераторы азота и сфера их применения

В газовой хроматографии азот –…

расчет площади пика хроматограммы31.01.2022

расчет площади пика хроматограммы

Газовые хроматографы: устройство и принцип работы.

Любой газовый хроматограф состоит минимум…

расчет площади пика хроматограммы30.01.2022

расчет площади пика хроматограммы

ГХ или ВЭЖХ? Что выбрать?

При появлении новой аналитической задачи…

расчет площади пика хроматограммы16.11.2021

расчет площади пика хроматограммы

Хроматография. Простыми словами.

О хроматографии написано много. Мы…

расчет площади пика хроматограммы10.11.2021

расчет площади пика хроматограммы

Как проводится хроматография

Хроматографический анализ представляет собой один…

расчет площади пика хроматограммы18.03.2021

расчет площади пика хроматограммы

Абсорбционная спектрометрия уже больше века…

расчет площади пика хроматограммы18.03.2021

расчет площади пика хроматограммы

Основные Параметры Хроматографических Пиков

Ключевую для хроматографии информацию получают…

расчет площади пика хроматограммы21.01.2021

расчет площади пика хроматограммы

Результатом хроматографии является хроматограмма, дающая…

расчет площади пика хроматограммы21.01.2021

расчет площади пика хроматограммы

Распространённые причины поломки хроматографов

Использование любых сложных видов оборудования…

расчет площади пика хроматограммы02.10.2020

расчет площади пика хроматограммы

Как Хроматография Применяется в Парфюмерии?

Методику хроматографии активно используют в…

расчет площади пика хроматограммы02.10.2020

расчет площади пика хроматограммы

Хроматография: история открытия и развития

Хроматография сегодня активно используется в…

расчет площади пика хроматограммы06.09.2020

расчет площади пика хроматограммы

Как правильно выбрать хроматограф?

Хроматография – метод анализа жидкостных…

расчет площади пика хроматограммы05.09.2020

расчет площади пика хроматограммы

Работа любого сложного устройства сопровождается…

расчет площади пика хроматограммы28.07.2020

расчет площади пика хроматограммы

Сегодня хроматография остается самым используемым…

расчет площади пика хроматограммы28.07.2020

расчет площади пика хроматограммы

Предшественником всех современных спектрометров считается…

расчет площади пика хроматограммы06.07.2020

расчет площади пика хроматограммы

Разделение сложных смесей на единичные…

расчет площади пика хроматограммы06.07.2020

расчет площади пика хроматограммы

Хроматографические методы в криминалистике

Криминалистические экспертизы играют важную роль…

расчет площади пика хроматограммы06.07.2020

расчет площади пика хроматограммы

Хроматография в фармацевтической промышленности

В настоящее время можно выделить…

расчет площади пика хроматограммы27.05.2020

расчет площади пика хроматограммы

Принципы работы спектрометра

Спектрометр – прибор, работающий на…

расчет площади пика хроматограммы08.05.2020

расчет площади пика хроматограммы

Хромато-масс-спектрометры: принцип действия

Командой Хроматограф.ру в Печорской центральной…

расчет площади пика хроматограммы08.05.2020

расчет площади пика хроматограммы

Порядок технического обслуживания оборудования производства «НПО СПЕКТРОН»

При поставке приборы снабжаются всем…

расчет площади пика хроматограммы17.04.2020

расчет площади пика хроматограммы

Хроматография в контроле качества продовольственного сырья и пищевых продуктов

Безопасность и качество продуктов питания…

расчет площади пика хроматограммы17.04.2020

расчет площади пика хроматограммы

Телемедицина для хроматографов

Что такое телемедицина? Это консультация…

расчет площади пика хроматограммы15.04.2020

расчет площади пика хроматограммы

Основные производители хроматографов в мире, в России

Хроматографы используются в аналитических исследованиях,…

расчет площади пика хроматограммы02.12.2019

расчет площади пика хроматограммы

Области применения газовых и жидкостных хроматографов

Хроматография – способ разделения многокомпонентных…

расчет площади пика хроматограммы02.12.2019

расчет площади пика хроматограммы

Хроматографические Методы Анализа

Хроматографические методы анализа базируются на…

расчет площади пика хроматограммы02.12.2019

расчет площади пика хроматограммы

Хроматограф — принцип действия, виды хроматографов

Одним из самых популярных методов…

расчет площади пика хроматограммы23.02.2019

7 (343) 300 90 95 обратный звонок

info@gcpro.ru написать письмо

расчет площади пика хроматограммы

Екатеринбург, Сибирский
тракт, 57 оф. 308

Видео:Пирогов А.В. Газовая хроматографияСкачать

Пирогов А.В. Газовая хроматография

Хроматография (ОФС.1.2.1.2.0001.15). Методы, параметры

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Хроматография (ОФС.1.2.1.2.0001.15)

Хроматография – метод разделения смесей веществ, основанный на их многократном перераспределении между двумя контактирующими фазами, одна из которых неподвижна, а другая имеет постоянное направление движения.

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Взамен ст. ГФ XI, вып.1

Хроматографией называется метод разделения смесей веществ, основанный на их многократном перераспределении между двумя контактирующими фазами, одна из которых неподвижна, а другая имеет постоянное направление движения. По механизму, лежащему в основе разделения, различают адсорбционную, распределительную, ионообменную и другие виды хроматографии.

В настоящее время используются следующие хроматографические методы анализа, представленные на рис.1

Рисунок 1. Методы хроматографического анализа.

расчет площади пика хроматограммы

Результат хроматографического разделения представляется в виде хроматограммы.

Видео:Настройка хроматографа "Хромопласт". Серия 1Скачать

Настройка хроматографа "Хромопласт". Серия 1

ХРОМАТОГРАММА И ХРОМАТОГРАФИЧЕСКИЕ ПАРАМЕТРЫ

Хроматограмма представляет собой графическое или иное представление сигнала детектора, концентрации веществ в элюате или другой количественной величины, используемой для измерения концентрации веществ в элюате, от времени или объема подвижной фазы. В планарной (плоскостной) хроматографии хроматограммой называют также зафиксированную на бумаге (бумажная хроматография) или ТСХ-пластинке (тонкослойная хроматография) последовательность зон адсорбции веществ исходной (анализируемой) смеси.

Схематически хроматограммы представляют собой последовательность гауссовых пиков на базовой линии (рис. 2).

Базовая линия – сигнал от подвижной фазы.

Пик – часть хроматограммы, регистрирующая отклик детектора. Пик отображает постепенное нарастание концентрации вещества и последующее ее уменьшение. В случае линейной изотермы сорбции кривая, описывающая пик, приближается к кривой гауссова распределения.

Основание пика — продолжение базовой линии, соединяющее начало и конец пика.

Площадь пика (S) – площадь хроматограммы, заключенная между кривой, описывающей пик, и его основанием.

Высота пика (H) – расстояние от максимума пика до его основания, измеренное параллельно оси отклика детектора.

расчет площади пика хроматограммы

Рисунок 2. Хроматограмма и основные хроматографические параметры: 1 и 2 – пики соединений 1 и 2; t1 и t2 – соответствующие времена удерживания; t0 – время удерживания несорбирующегося вещества; W1 и W2 – ширина пиков у основания; W0,5 – ширина пика на половине его высоты (предполагается гауссова форма пиков)

Видео:Часть 2. Газовый хроматографСкачать

Часть 2. Газовый хроматограф

Интерпретация хроматографических данных

Время удерживания (tR или t) – время, необходимое для элюирования вещества. Соответствует времени появления максимума пика на хроматограмме.

Объем удерживания (VR) – объем подвижной фазы, необходимый для элюирования вещества. Может быть вычислен по времени удерживания и скорости потока (F).

Объем удерживания, в отличие от времени удерживания, не зависит от скорости потока.

Время удерживания несорбирующегося вещества (t0 или tм) – время, необходимое для элюирования неудерживаемого на сорбенте вещества. В эксклюзионной хроматографии t0 соответствует времени удерживания веществ, размер молекул которых больше, чем наибольшие поры сорбента.

Объем удерживания несорбирующегося вещества (V0) – объем подвижной фазы, необходимый для элюирования неудерживаемого вещества. Может быть вычислен по времени удерживания неудерживаемого вещества и скорости потока (F):

В эксклюзионной хроматографии V0 соответствует объему удерживания веществ, размер молекул которых больше, чем наибольшие поры сорбента.

Общее время удерживания подвижной фазы (tt) – в эксклюзионной хроматографии время удерживания веществ, молекулы которых меньше, чем наименьшие поры сорбента.

Общий объем удерживания подвижной фазы (Vt) – в эксклюзионной хроматографии объем удерживания веществ, молекулы которых меньше, чем на­именьшие поры сорбента.

Константа (коэффициент) распределения (K0) – в эксклюзионной хроматографии характеристика элюирования вещества из определенной колонки, которую рассчитывают с помощью выражения:

расчет площади пика хроматограммы

Приведенное (исправленное) время удерживания вещества (t´R) ‒ время удерживания вещества за вычетом времени удерживания несорбируемого вещества. Может быть рассчитано по формуле:

Исправленное время удерживания не зависит от объема трубопроводов хроматографической системы, установленных между инжектором и колонкой.

Относительное время удерживания (r) – относительное приведенное (исправленное) время удерживания вещества 2 по веществу 1:

расчет площади пика хроматограммы

Нескорректированное относительное время удерживания (RRT) – относительное время удерживания вещества 2 по веществу 1:

расчет площади пика хроматограммы

Если не указано иное, значения относительного времени удерживания, приведенные в фармакопейных статьях, соответствуют нескорректированному относительному времени удерживания

Коэффициент емкости (k´) – коэффициент емкости колонки по веществу с временем удерживания tR, показывающий, во сколько раз исправленное время удерживания вещества больше, чем время удерживания несорбируемого вещества.

расчет площади пика хроматограммы

Эффективность хроматографической системы ‒ параметр, характеризующий степень размывания хроматографического пика. Эффективность выражается числом теоретических тарелок (N):

расчет площади пика хроматограммы

W – ширина пика у основания;

W0,5 – ширина пика на половине высоты.

При расчете числа теоретических тарелок значения времени удерживания и ширины пика должны быть приведены к одинаковой размерности.

Число теоретических тарелок зависит от природы определяемого вещества, его концентрации или объема, вводимого в систему, от колонки, температуры колонки и состава подвижной фазы.

Если не указано иное, то эффективность хроматографической системы, требования к которой приведено в фармакопейной статье, рассчитывается по формуле, использующей ширину пика на половине его высоты.

Фактор асимметрии (фактор симметрии) пика (As) рассчитывают по формуле:

расчет площади пика хроматограммыгде

W0,05 – ширина пика на 5 % (1/20) его высоты;

f – расстояние между перпендикуляром, опущенным из вершины пика, и восходящей стороной пика на 5 % его высоты (рис. 3).

Если фактор асимметрии равен 1, то пик симметричен. Если фактор асимметрии больше 1, то это означает, что растянут задний фронт пика. Если фактор асимметрии меньше 1, то пик растянут спереди.

расчет площади пика хроматограммы

Рисунок 3. Схема расчета фактора асимметрии пика

Разрешение (Rs).

Разрешение между пиками двух веществ смеси элюирующимися друг за другом рассчитывают по формулам:

расчет площади пика хроматограммы

при этом tR2 ≥ tR1. При расчете разрешения величины времени удерживания и ширины пиков должны быть приведены к одинаковой размерности.

Если не указано иное, то разрешение, требования к которому приведены в фармакопейной статье, рассчитывается по формуле, использующей ширину пиков на половине высоты.

В случае, если пики несимметричны и если интенсивность пиков значительно различается, параметр Rs не всегда корректно описывает разделение хроматографических пиков. Таким образом, даже при значениях Rs ≥ 1,5 может наблюдаться неполное разделение пиков. В этих случаях при оценке разделяющей способности можно заменить параметр Rs на параметр «отношение максимум/минимум».

Отношение максимум/минимум (p/v), называемое также отношением «peak-to-valley», «пик – долина». Этот параметр позволяет оценить разделительную способность хроматографической системы. Значение p/v рассчитывается по формуле:

Hp – высота меньшего пика относительно экстраполированной базовой линии;

Hv – высота низшей точки (седловины) кривой, разделяющей пики, относительно экстраполированной базовой линии (рис. 4).

расчет площади пика хроматограммы

Рисунок 4. Хроматограмма не полностью разделяемых веществ

Данное соотношение применяется для оценки разделительной способности хроматографической системы, если вещества смеси разделяются не полностью. Рассчитанное отношение максимум/минимум в значительной степени зависит от выбранного варианта интегрирования хроматограммы. Результаты измерения соотношения p/v будут некорректны в случае разметки меньшего пика методом экстраполяции смещенной базовой линии (методом тангенциальной касательной).

Отношение сигнал/шум (S/N).

Краткосрочный шум сигнала детектора (шум базовой линии) влияет на прецизионность количественного определения. Отношение сигнал/шум рассчитывают по формуле:

расчет площади пика хроматограммы

Н – высота пика, соответствующего рассматриваемому веществу на хроматограмме указываемого стандартного раствора, измеренная от максимума пика до экстраполированной базовой линии. Экстраполяция базовой линии проводится для сигнала на участке базовой линии во временном интервале, продолжительность которого не менее 5-кратного значения ширины пика на его полувысоте;

h – размах фонового шума, измеряемый либо на хроматограмме контрольного (холостого) раствора (или раствора плацебо), либо на хроматограмме того же раствора стандартного образца.

Измерение размаха фонового шума проводится во временном интервале, продолжительность которого не менее 5-кратного значения ширины пика на его полувысоте, расположенном, если это возможно, равномерно по обе стороны от места возможного обнаружения пика. В случае использования для измерения шума хроматограммы контрольного (холостого) раствора (или раствора плацебо) измерение размаха фонового шума проводится во временном интервале, включающем в себя время удерживания рассматриваемого вещества, при этом продолжительность временного интервала, в котором проводится измерение шума, должна не менее чем в 5 раз превышать ширину на половине высоты для пика на хроматограмме указываемого раствора стандартного образца (рис. 5).

расчет площади пика хроматограммы

Рисунок 5. Вычисление отношения сигнал/шум.

Объем задержки (D) (объем задержки градиента) представляет собой объем системы между точкой, в которой происходит смешение элюентов, и началом колонки.

Объем задержки градиента влияет на времена удерживания веществ и общий профиль наблюдаемой хроматографической картины, получаемой при использовании градиентного элюирования. Объем задержки хроматографической системы определяется следующим способом.

Колонка. Заменяют хроматографическую колонку капилляром (например, 1 м × 0,12 мм).

Подвижная фаза.

Подвижная фаза A — вода.

Подвижная фаза B — 0,1 % (об/об) раствор ацетона.

Скорость потока. Необходимая для создания давления, достаточного для стабильной работы насоса (например, 2 мл/мин).

расчет площади пика хроматограммы

Детектор. Спектрофотометрический при длине волны 265 нм.

Определяют время (t0,5) в минутах, когда оптическая плотность увеличилась на 50 %. Вычисляют объем задержки:

расчет площади пика хроматограммы

расчет площади пика хроматограммы

Рисунок 6. Определение объема задержки градиента

Прецизионность системы в условиях повторяемости

Прецизионность системы в условиях повторяемости выражается в виде рассчитанного относительного стандартного отклонения в процентах [RSD (%)] по результатам последовательных измерений не менее чем 3 вколов или нанесений раствора сравнения и рассчитывается по формуле:

расчет площади пика хроматограммы

В планарной хроматографии аналогом времени удерживания является фактор удерживания (Rf):

Rf = a / b

где a – расстояние от точки нанесения пробы до центра пятна, характеризующего зону адсорбции;

b – расстояние от линии старта до линии фронта элюента.

На экспериментально определяемые значения Rf заметно влияют условия хроматографирования. Оценкой хроматографической подвижности, менее чувствительной к влиянию отклонений в условиях проведения эксперимента, является величина Rst, представляющая собой отношение величины Rf одного вещества к величине Rf другого, принятого за стандарт:

расчет площади пика хроматограммы

расчет площади пика хроматограммы

Рисунок 7. Схема определения значений Rf и Rst.

Данные планарной хроматографии могут быть представлены в виде денситограмм.

Видео:Расчет RRF и анализ образцаСкачать

Расчет RRF и анализ образца

РАСЧЕТ СОДЕРЖАНИЯ ОПРЕДЕЛЯЕМЫХ ВЕЩЕСТВ

При расчетах содержания определяемых веществ пики растворителей и реактивов, подвижной фазы или среды (матрицы) образца не учитываются.

Существуют 4 основных метода расчета концентрации анализируемого вещества по хроматографическим данным.

1. Метод нормирования (метод внутренней нормализации). Применение данного метода основано на предположении, что на хроматограмме зарегистрированы все вещества, входящие в состав анализируемой смеси, и что доля площади (высоты) каждого пика от суммы площадей (высот) всех пиков соответствует содержанию вещества в массовых процентах. Процентное содержание вещества в анализируемой смеси рассчитывается путём определения площади соответствующего пика как процентной части общей площади всех пиков, за исключением пиков, соответствующих растворителям или реактивам, подвижной фазе или матрице образца. Содержание каждого вещества в смеси в процентах может быть вычислено по формуле:

Если чувствительность детектора различна по отношению к каждому из веществ, то вводят поправочные коэффициенты ki. Относительный коэффициент отклика детектора, обычно называемый фактором отклика, обозначает чувствительность детектора для данного вещества относительно стандартного вещества. Поправочный коэффициент – это число, обратное фактору отклика.

расчет площади пика хроматограммы

Поправочные коэффициенты рассчитывают относительно основного вещества анализируемой смеси или другого стандартного вещества по формуле:

расчет площади пика хроматограммыгде

Сi и С0 – концентрация i-го вещества и стандартного вещества соответственно;

Si и S0 – площадь (высота) пика i-го вещества и стандартного вещества соответственно.

Данные коэффициенты могут не учитываться в случае, если они находятся в пределах диапазона 0,8 – 1,2.

При использовании поправочных коэффициентов выражение для расчета количественного содержания приобретает вид:

расчет площади пика хроматограммы

При проведении испытания на примеси методом нормализации или методом внешнего стандарта с использованием разведения раствора испытуемого образца в качестве раствора сравнения учитывают все указанные в нормативной документации поправочные коэффициенты, значение которых выходит за пределы диапазона 0,8 – 1,2.

2. Метод внешнего стандарта. Концентрацию испытуемого вещества определяют путём сравнения сигнала (пика), полученного на хроматограммах испытуемого раствора, и сигнала (пика), полученного на хроматограммах раствора стандартного образца.

Концентрацию определяемого вещества в испытуемом растворе рассчитывают по формуле:

расчет площади пика хроматограммы

S и S0 – средние значения площадей (высот) пиков на хроматограммах испытуемого и стандартного растворов соответственно;

С и С0 – концентрации определяемого и стандартного растворов соответственно.

Количественное определение содержания примесей методом внешнего стандарта предпочтительнее проводить с использованием стандартных растворов примесей с концентрациями, близкими к их ожидаемым концентрациям в испытуемом растворе.

В качестве раствора стандартного образца для количественного определения примесей возможно использование раствора основного вещества. В этом случае разведение подбирается таким образом, чтобы концентрация основного соединения в растворе стандартного образца по отношению к его концентрации в испытуемом растворе была близка к ожидаемой концентрации примесей в испытуемом растворе. В этом случае следует учесть факторы отклика примесей по отношению к основному веществу, если их значения выходят за рамки 0,8 — 1,2.

Частным случаем метода внешнего стандарта является метод калибровочной кривой, в ходе которого определяют взаимосвязь между измеренным или обработанным сигналом (у) и количеством (концентрацией, массой и т.д.) определяемого вещества (х) и рассчитывают уравнение калибровочной функции. Результаты испытания рассчитывают из измеренного или обработанного сигнала с помощью обратной функции.

3. Метод внутреннего стандарта. Концентрацию определяемого вещества определяют путём сравнения отношения сигналов (площадей или высот пиков), соответствующих определяемому веществу и внутреннему стандарту, на хроматограмме испытуемого раствора и отношения сигналов (площадей или высот пиков), соответствующих определяемому веществу и внутреннему стандарту, на хроматограмме раствора стандартного образца. Метод внутреннего стандарта основан на введении в анализируемую смесь определенного количества стандартного вещества (внутренний стандарт). В испытуемый и стандартный растворы вводят известные количества внутреннего стандарта, хроматографируют растворы и определяют отношения площадей (высот) пиков определяемого вещества к площади (высоте) пика внутреннего стандарта в испытуемом и стандартном растворах.

Концентрацию определяемого вещества (Х) рассчитывают по формуле:

расчет площади пика хроматограммы

4. Метод стандартных добавок. В качестве внутреннего стандарта выбирается вещество, отсутствующее в испытуемой пробе, не взаимодействующее с определяемым веществом и другими веществами пробы, обладающее достаточной стабильностью, полностью отделяющееся от веществ пробы и не содержащее примесей с временами удерживания, совпадающими с временем удерживания определяемого вещества. Концентрация внутреннего стандарта должна быть близка к концентрации определяемых веществ, а структура и свойства по возможности аналогичны структуре и свойствам определяемых веществ.

Концентрация определяемого вещества определяется путём сравнения сигнала (площади или высоты пика), соответствующего определяемому веществу, на хроматограмме испытуемого раствора, и сигнала (площади или высоты пика) определяемого вещества на хроматограмме испытуемого раствора с известной добавкой определяемого вещества. Метод стандартных добавок основан на введении в анализируемую смесь известного количества определяемого вещества и сравнения сигналов, полученных для испытуемого раствора со стандартной добавкой и без добавки определяемого вещества. При внесении стандартной добавки стараются минимизировать разбавление испытуемого образца, чтобы измерения раствора со стандартной добавкой и без проходили в одинаковых условиях с одинаковым влиянием матрицы. Количество вводимого в стандартной добавке определяемого вещества должно быть соизмеримо с его предполагаемым содержанием в испытуемом образце. После проведения испытания сравнивают полученные значения интенсивности и рассчитывают количественное содержание определяемого вещества Сх по формуле:

расчет площади пика хроматограммы

Сстд — концентрация стандартной добавки;

Sx — интенсивность сигнала определяемого вещества (площадь или высота пика) для испытуемого раствора без стандартной добавки;

Sстд+х — интенсивность сигнала определяемого вещества (площадь или высота пика) для испытуемого раствора со стандартной добавкой.

При необходимости формулу корректируют с учетом разбавлений испытуемого раствора за счет введения стандартной добавки.

Видео:Хроматография ч.1Скачать

Хроматография ч.1

РЕКОМЕНДАЦИИ ПО РАЗМЕТКЕ И ИНТЕГРИРОВАНИЮ ХРОМАТОГРАММ ПРИ ОПРЕДЕЛЕНИИ ПРИМЕСЕЙ

Если не указано иное, в испытаниях на содержание примесей в качестве порога игнорирования (неучитываемый предел, уровень содержания вещества, при котором и при меньшем содержании пик не принимается во внимание) принимают величину 0,05 % от содержания основного вещества.

В случаях, когда при испытании на примеси требуется определение суммарного содержания примесей или количественного определения примеси, при интерпретации хроматограммы важно выбрать подходящие условия интегрирования и значения порога интегрирования [интенсивность сигнала пика соединения (высоты или площади)], при котором (и при меньшем) пик не учитывается системой сбора данных и не участвует в количественных расчетах.

С целью разметки на хроматограмме всех пиков, подлежащих учету, заданный порог интегрирования системы сбора данных не должен превышать половину порога игнорирования.

Интегрирование площади пика любой примеси, пик которой не полностью разделяется с основным пиком, предпочтительно проводить экстраполяцией смещенной базовой линии (методом тангенциальной касательной). Использование других способов интегрирования должно быть специально оговорено в фармакопейной статье.

Видео:Agilent Openlab 01.05-01.09 Обработка хроматограмм №1 "Интегрирование" на русском!Скачать

Agilent Openlab 01.05-01.09 Обработка хроматограмм №1 "Интегрирование" на русском!

ОЦЕНКА ПРИГОДНОСТИ ХРОМАТОГРАФИЧЕСКОЙ СИСТЕМЫ

Испытания пригодности системы являются неотъемлемой частью методики и используются для того, чтобы убедиться в надлежащем функционировании хроматографической системы и обеспечить выполнение предъявляемых к ней требований.

При проведении испытаний используемое оборудование должно быть квалифицировано и способно к функционированию надлежащим образом.

Для оценки пригодности системы указывают:

  • требования к параметрам, характеризующим форму пика [эффективность хроматографической системы N и фактор асимметрии (фактор симметрии) As];
  • требования к разделительной способности (разрешение между пиками RS или отношение пик — долина p/v);
  • требования к воспроизводимости (относительное стандартное отклонение, RSD) значений площади или высоты пиков, а также времен удерживания пиков в случае оценки подлинности соединений;
  • требования к чувствительности при проведении испытания на примеси [минимально определяемая концентрация (фактический предел количественного определения) примеси]. Оценивается посредством расчета отношения сигнал/шум для раствора соответствующей концентрации.

Если в фармакопейной статье не указано иное, должны выполняться следующие требования и все дополнительные требования, приведенные в нормативном документе:

  • в испытаниях на примеси или количественное содержание для пика на хроматограмме растворе стандартного образца, используемого для количественных определений, значение величины фактора асимметрии (фактора симметрии) As должно находиться в пределах от 0,8 до 1,5;
  • разрешение между пиками Rs ³ 1,5 (в случае не полностью разделенных пиков вместо разрешения может быть использовано соотношение p/v. При этом требования к минимальному значению соотношения p/v устанавливаются в фармакопейной статье);
  • отношение сигнал/шум для пика вещества, полученное для раствора с концентрацией, равной требуемому уровню минимально определяемой концентрации, должно быть не менее 10. Требуемый уровень минимально определяемой концентрации [фактический предел количественного определения (ПКО)] зависит от того, предполагает ли методика вычисление содержания примесей, или только полуколичественную оценку, когда результат представляется в виде «менее Х» или «не более Х», где Х – допустимое содержание примеси. Для методик, предполагающих вычисление содержания примесей, минимальная определяемая концентрация для применяемой хроматографической системы не должна превышать значение порога игнорирования (если не указано иное ­– 0,05 % относительно концентрации основного вещества в испытуемом растворе). Для полуколичественных методик минимальная определяемая концентрация для применяемой хроматографической системы не должна превышать максимально допустимое содержание примеси. При необходимости оценки содержания нескольких примесей требуемый уровень минимальной определяемой концентрация для применяемой хроматографической системы определяется примесью, нормы содержания которой наиболее строги. Если в фармакопейной статье не указано иное, то раствор вещества минимально определяемой концентрации для оценки чувствительности детектирования можно приготовить растворением стандартного образца вещества в том же растворителе, который используется для приготовления испытуемого раствора, с уровнем концентрации 0,05 % относительно концентрации основного вещества в испытуемом растворе.

Требования к прецизионности системы в условиях повторяемости при количественном определении основного вещества в субстанциях

При количественном определении основного вещества в фармацевтических субстанциях при содержании основного вещества, близком к 100 %, максимально допустимое относительное стандартное отклонение значений интенсивности (площади или высоты) пика основного вещества для заданного количества повторных введений стандартного раствора RSDmax вычисляется по формуле:

Если в фармакопейной статье не указано иное, то значение RSD не должно превышать величин RSDmax, приведенных в таблице. Данное требование не применяется при испытаниях на примеси.

расчет площади пика хроматограммы

Таблица. Максимально допустимое относительное стандартное отклонение RSDmax в зависимости от верхнего предела содержания основного вещества и числа отдельных введений проб

В, %Число отдельных введений проб (вколов)
3456
Максимально допустимое относительное стандартное отклонение RSDmax
2,00,410,590,730,85
2,50,520,740,921,06
3,00,620,891,101,27

Соответствие критериям пригодности системы должно поддерживаться на протяжении всего испытания. В зависимости от различных факторов, например, частоты использования методики и опыта работы с хроматографической системой, аналитик выбирает соответствующую схему проверки, подтверждающую соответствие этим требованиям.

В планарной хроматографии при проведении испытаний, регламентирующих наличие посторонних примесей/родственных соединений, должно быть предусмотрено определение предела обнаружения определяемых примесей и разделительной способности хроматографической системы.

Для подтверждения пригодности системы возможно одновременное использование двух тестов: «Подтверждение разделительной способности» и «Подтверждение чувствительности».

Тест «Подтверждение разделительной способности» проводят путём нанесения на пластинку и последующего хроматографирования специального стандартного раствора, содержащего два или более веществ с известными значениями Rf. После хроматографирования эти вещества должны разделиться, образуя зоны адсорбции, значения Rf которых равны заданным.

Тест «Подтверждение чувствительности» позволяет оценить чувствительность проявления. Он заключается в нанесении определённого количества стандартного вещества, хроматографируемого в условиях предыдущего теста и проявляемого тем же реагентом. Зона адсорбции стандартного вещества должно чётко обнаруживаться.

В каждом случае природа стандартных веществ, состав стандартного раствора, наносимые количества, приблизительные значения Rf устанавливают в фармакопейных статьях.

При необходимости для достижения требуемых критериев пригодности хроматографической системы проводится корректировка хроматографических условий.

Видео:Газожидкостная хроматографияСкачать

Газожидкостная хроматография

КОРРЕКТИРОВКА УСЛОВИЙ ХРОМАТОГРАФИРОВАНИЯ

Далее приводятся пределы возможных изменений различных параметров хроматографической методики, которые могут быть внесены в нее для со­ответствия требованиям пригодности системы без принципиального изменения методик. Корректировка условий градиентного элюирования является более критичной, чем изократических условий, так как может вызвать сдвиг пиков на другую стадию градиента, и, таким образом, привести к некорректной идентификации пиков, наложению пиков или сдвигов, при которых элюирование интересующих соединений происходит после указанного времени регистрации хроматограммы. При внесении изменений, отличных от приведенных ниже, требуется проведение повторной валидации методики.

Проверка пригодности системы должна быть включена в методики для подтверждения получения разделения, требуемого для надлежащего проведения испытания. Тем не менее, поскольку неподвижные фазы описаны только в общем виде, и существует огромное количество доступных коммерческих фаз, отличающихся по хроматографическому поведению, некоторая корректировка условий хроматографирования может потребоваться для выполнения требований пригодности системы. В методиках с использованием обращенно-фазовой жидкостной хроматографии корректировки различных параметров не всегда приводят к удовлетворительному разделению. В этом случае может возникнуть необходимость замены одной колонки на другую, такого же типа, обеспечивающую желаемое хроматографическое поведение.

Если в фармакопейной статье не указано иное, допустимы следующие изменения параметров хроматографической системы.

Тонкослойная и бумажная хроматография

Состав подвижной фазы: количество растворителя, содержание которого в смеси наименьшее, может изменяться в пределах ± 30 % (относительное содержание) или ± 2 % (абсолютное содержание) в зависимости от того, какая из величин будет больше. Абсолютное содержание других веществ не может быть изменено более чем на 10 %.

Пример 1: для вещества, содержание которого составляет 10 % подвижной фазы, изменение относительного содержания на 30 % приведет к изменению его абсолютного содержания до 7 – 13 %, тогда как изменение на 2 % по абсолютному содержанию приведет к изменению абсолютного содержания до 8 – 12 %. Допустимое изменение по относительному содержанию больше, чем допустимое изменение по абсолютному содержанию. Таким образом, допускается изменение содержания 7 – 13%.

Пример 2: для вещества, содержание которого составляет 5 % подвижной фазы, изменение относительного содержания на 30 % приведет к изменению его абсолютного содержания до 3,5 – 6,5 %, тогда как изменение на 2 % по абсолютному содержанию приведет к изменению его абсолютного содержания в подвижной фазе до 3 – 7 %. В этом примере допустимое изменение по абсолютному содержанию больше, чем допустимое изменение по относительному содержанию, и допустимым диапазоном содержания является 3 – 7 %.

pH среды водного компонента подвижной фазы: ± 0,2 pH, если иное не указано в нормативном документе, или ± 1,0 pH в случаях испытания неионизируемых веществ.

Концентрация солей в буферном веществе подвижной фазы: ± 10 %.

Наносимый объём. При использовании пластинок с малым размером частиц сорбента (2 — 10 мкм) наносимый объём может быть изменен на 10 –20 % от заявленного объёма.

Жидкостная хроматография: изократическое элюирование

Состав подвижной фазы: количество растворителя, содержание которого в смеси наименьшее, может изменяться в пределах ± 30 % (относительное содержа­ние) или ± 2 % (абсолютное содержание) в зависимости от того, какая из величин будет больше. Абсолютное содержание других веществ не может быть изменено более чем на 10 %.

pH среды водного компонента подвижной фазы: ± 0,2 pH, если иное не указано в нормативном документе, или ± 1,0 pH в случаях испытания неионизируемых веществ.

Концентрация солей в буферном веществе подвижной фазы: ± 10 %.

Скорость потока подвижной фазы: ± 50 %, большая степень изменений допустима при одновременном изменении размеров колонки. При необходимости одновременного изменения размеров колонки и скорости потока сначала рассчитывается номинальная скорость потока для колонки, размеры которой отличаются от приведенной в нормативном документе, а затем допускается корректировка полученного значения скорости потока на ± 50 %.

Параметры колонки

  • замена типа неподвижной фазы недопустима (например, недопустима замена фазы С18 на фазу С8);
  • размер частиц: максимальное уменьшение размера частиц 50 %, увеличение не допускается.

Размеры колонки

Длина колонки: ± 70 %,

внутренний диаметр колонки: ± 25 %.

При изменении размеров колонки скорость потока пересчитывают, используя следующее уравнение:

расчет площади пика хроматограммы

  • F1 — скорость потока, указанная в нормативном документе, мл/мин;
  • F2 — скорректированная скорость потока, мл/мин;
  • l1 — длина колонки, указанная в нормативном документе, мм;
  • l2 — длина используемой колонки, мм;
  • d1 — внутренний диаметр колонки, указанный в нормативном документе, мм;
  • d2 — внутренний диаметр используемой колонки, мм.

Температура: ± 10 % от указанной рабочей температуры, если не указано иначе.

Длина волны детектора. Изменения не допускаются.

Вводимый объём пробы. Может быть уменьшен при условии, что чувствительность фактически применяемой хроматографической системы (минимально определяемая концентрация) и прецизионность системы в условиях повторяемости для определяемых соединений остаются удовлетворительными.

Жидкостная хроматография: градиентное элюирование

Изменение хроматографических условий для систем с градиентом требует большей осторожности, чем для изократических.

Состав подвижной фазы/профиль градиентного элюирования: незначительные изменения состава подвижной фазы и системы градиента являются приемлемыми при условии, что:

  • выполнены требования пригодности системы;
  • основной пик элюируется в пределах ± 15 % от обозначенного времени удерживания;
  • элюирующая способность конечного состава подвижной фазы не менее предписанного состава.

Если при использовании градиентного элюирования не может быть достигнуто соответствие требованиям пригодности системы, рекомендуется оценить объем задержки градиента или сменить используемую колонку.

Объем задержки градиента. Конфигурация используемого оборудования может значительно изменить разрешение, указанные абсолютные и относительные времена удерживания. Это может произойти из-за отличия объема задержки градиента используемой системы от объема задержки градиента системы, с помощью которой проводилась валидация методики. В нормативном документе часто перед началом программы градиента включена изократическая стадия, чтобы можно было адаптировать систему к временным точкам градиента с учетом разницы объема задержки у системы, использованной для разработки методики, и у фактически использующейся системы. Решение о необходимости адаптации длительности изократической стадии для данного аналитического оборудования принимается пользователем. Если объем задержки, использованный при разработке методики, приведен в нормативном документе, то интервалы времени (t), указанные в таблице градиента, можно заменить адаптированными интер­валами времени (tc), рассчитанными с помощью следующего уравнения:

расчет площади пика хроматограммы

D – объем задержки, мл;

D0 – объем задержки, использованный при разработке методики, мл;

F – скорость потока, мл/мин.

Изократическая стадия, введенная с этой целью, может быть исключена, если имеются данные валидации по применению методики без этой стадии.

pH среды водного компонента подвижной фазы. Изменения не допускаются.

Концентрация солей в буферном веществе подвижной фазы. Изменения не допускаются.

Скорость потока. Изменения допустимы при изменении размеров колонки.

Параметры колонки

  • замена типа неподвижной фазы недопустима (например, недопустима замена С18 на С8);
  • размер частиц: изменения не допускаются;

Размеры колонки

  • длина колонки: ± 70 %;
  • внутренний диаметр колонки: ± 25 %;

При изменении размеров колонки скорость потока пересчитывают, используя следующее уравнение:

расчет площади пика хроматограммы

  • F1 — скорость потока, указанная в нормативном документе, мл/мин;
  • F2 — скорректированная скорость потока, мл/мин;
  • l1 — длина колонки, указанная в нормативном документе, мм;
  • l2 — длина используемой колонки, мм;
  • d1— внутренний диаметр колонки, указанный в нормативном документе мм;
  • d2 — внутренний диаметр используемой колонки, мм.

Температура. ± 5 % от указанной рабочей температуры, если не указано иначе.

Длина волны детектора. Изменения не допускаются.

Вводимый объём пробы. Может быть уменьшен при условии, что детектирование (предел количественного определения) и сходимость отклика (RSD площадей или высот) для пика (пиков) определяемых соединений остаются удовлетворительными.

Газовая хроматография

Параметры колонки

  • размер частиц: максимальное уменьшение на 50 %, увеличение не допускается (набивные колонки);
  • толщина плёнки: от минус 50 % до плюс 100 % (капиллярные колонки).

Размеры колонки

  • Длина колонки: ± 70 %;
  • Внутренний диаметр колонки: ± 50 %.

Скорость потока: ± 50 %.

Температура: ± 10 %.

Вводимый объём пробы. Может быть уменьшен при условии, что чувствительность фактически применяемой хроматографической системы и прецизионность системы в условиях повторяемости для определяемых соединений остаются удовлетворительными.

Сверхкритическая флюидная хроматография

Состав подвижной фазы. Для набивных колонок количество растворителя, содержание которого в смеси наименьшее, может изменяться в пределах ± 30 % (относительное содержание) или ± 2 % (абсолютное содержание) в зависимости от того, какая из величин будет больше; для систем с капиллярной колонкой изменения не допускаются.

Длина волны детектора. Изменения не допускаются.

Параметры колонки

  • размер частиц: максимальное уменьшение на 50 %, увеличение не допускается (набивные колонки).

Размер колонки

  • Длина колонки: ± 70 %;
  • Внутренний диаметр колонки: ± 25 % (набивные колонки), ± 50 % (капиллярные колонки).

Скорость потока: ± 50 %.

Температура: ± 5 %, если температура указана в нормативном документе.

Вводимый объём пробы. Может быть уменьшен при условии, что чувствительность фактически применяемой хроматографической системы и прецизионность системы в условиях повторяемости для определяемых соединений остаются удовлетворительными.

🔥 Видео

Идентификация по временам удерживания в хроматографии: не все так простоСкачать

Идентификация по временам удерживания в хроматографии: не все так просто

Хроматографические методы анализаСкачать

Хроматографические методы анализа
Поделиться или сохранить к себе: