работа совершенная газом равна площади

Видео:Работа, совершаемая газом при расширении. Работа при изменении объёма газаСкачать

Работа, совершаемая газом при расширении. Работа при изменении объёма газа

Первый закон термодинамики

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: работа в термодинамике, первый закон термодинамики, адиабатный процесс.

Начнём с обсуждения работы газа.

Газ, находящийся в сосуде под поршнем, действует на поршень с силой , где — давление газа, — площадь поршня. Если при этом поршень перемещается, то газ совершает работу.

При расширении газа эта работа будет положительной (сила давления газа и перемещение поршня направлены в одну сторону). При сжатии работа газа отрицательна (сила давления газа и перемещение поршня направлены в противоположные стороны).

Видео:Чему равна работа, совершаемая идеальным одноатомным газом при реализации процесса 1–2–3 - №24401Скачать

Чему равна работа, совершаемая идеальным одноатомным газом при реализации процесса 1–2–3 - №24401

Работа газа в изобарном процессе

Предположим, что газ расширяется при постоянном давлении . Тогда сила , с которой газ действует на поршень, также постоянна. Пусть поршень переместился на расстояние (рис. 1 ).

работа совершенная газом равна площади

Работа газа равна:

Но — изменение объёма газа. Поэтому для работы газа при изобарном расширении мы получаем формулу:

Если и — начальный и конечный объём газа, то для работы газа имеем: . Изобразив данный процесс на -диаграмме, мы видим, что работа газа равна площади прямоугольника под графиком нашего процесса (рис. 2 ).

работа совершенная газом равна площади

Рис. 2. Работа газа как площадь

Пусть теперь газ изобарно сжимается от объёма до объёма . С помощью аналогичных рассуждений приходим к формуле:

Но , и снова получается формула (1) .

Работа газа опять-таки будет равна площади под графиком процесса на -диаграмме, но теперь со знаком минус.

Итак, формула выражает работу газа при постоянном давлении — как в процессе расширения газа, так и в процессе сжатия.

Видео:Работа, совершаемая при термодинамических процессах. 10 класс.Скачать

Работа, совершаемая при термодинамических процессах. 10 класс.

Работа газа в произвольном процессе

Геометрическая интерпретация работы газа (как площади под графиком процесса на -диаграмме) сохраняется и в общем случае неизобарного процесса.

Действительно, рассмотрим малое изменение объёма газа — настолько малое, что давление будет оставаться приблизительно постоянным. Газ совершит малую работу . Тогда работа газа во всём процессе найдётся суммированием этих малых работ:

Но данный интеграл как раз и является площадью криволинейной трапеции (рис. 3 ):

работа совершенная газом равна площади

Рис. 3. Работа газа как площадь

Видео:Чему равна работа, совершаемая идеальным одноатомным газом при реализации процесса 1–2–3 - №24401Скачать

Чему равна работа, совершаемая идеальным одноатомным газом при реализации процесса 1–2–3 - №24401

Работа, совершаемая над газом

Наряду с работой , которую совершает газ по передвижению поршня, рассматривают также работу , которую поршень совершает над газом.

Если газ действует на поршень с силой , то по третьему закону Ньютона поршень действует на газ с силой , равной силе по модулю и противоположной по направлению: (рис. 4 ).

работа совершенная газом равна площади

Рис. 4. Внешняя сила , действующая на газ

Следовательно, работа поршня равна по модулю и противоположна по знаку работе газа:

Так, в процессе расширения газ совершает положительную работу 0 right )’ alt=’left ( A> 0 right )’ /> ; при этом работа, совершаемая над газом, отрицательна . Наоборот, при сжатии работа газа отрицательна , а работа, совершаемая поршнем над газом, положительна 0 right )’ alt=’left ( ‘ > 0 right )’ /> .

Будьте внимательны: если в задаче просят найти работу, совершённую над газом, то имеется в виду работа .

Как мы знаем, существует лишь два способа изменения внутренней энергии тела: теплопередача и совершение работы.

Опыт показывает, что эти способы независимы — в том смысле, что их результаты складываются. Если телу в процессе теплообмена передано количество теплоты , и если в то же время над телом совершена работа , то изменение внутренней энергии тела будет равно:

Нас больше всего интересует случай, когда тело является газом. Тогда (где , как всегда, есть работа самого газа). Формула (2) принимает вид: , или

Соотношение (3) называется первым законом термодинамики. Смысл его прост: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа и на совершение газом работы.

Напомним, что величина может быть и отрицательной: в таком случае тепло отводится от газа. Но первый закон термодинамики остаётся справедливым в любом случае. Он является одним из фундаментальных физических законов и находит подтверждение в многочисленных явлениях и экспериментах.

Видео:Работа при расширении газа (часть 4) | Термодинамика | ФизикаСкачать

Работа при расширении газа  (часть 4) | Термодинамика | Физика

Применение первого закона термодинамики к изопроцессам

Напомним, что в изопроцессе остаётся неизменным значение некоторой величины, характеризующей состояние газа — температуры, объёма или давления. Для каждого вида изопроцессов запись первого закона термодинамики упрощается.

1. Изотермический процесс, .
Внутренняя энергия идеального газа зависит только от его температуры. Если температура газа не меняется, то не меняется и внутренняя энергия: . Тогда формула (3) даёт:

Всё подведённое к газу тепло идёт на совершение газом работы.

2. Изохорный процесс, .
Если объём газа остаётся постоянным, то поршень не перемещается, и потому работа газа равна нулю: . Тогда первый закон термодинамики даёт:

Всё тепло, переданное газу, идёт на изменение его внутренней энергии.

3. Изобарный процесс, .
Подведённое к газу тепло идёт как на изменение внутренней энергии, так и на совершение работы (для которой справедлива формула (1) ). Имеем:

Видео:работа газаСкачать

работа газа

Адиабатный процесс

Процесс называется адиабатным, если он идёт без теплообмена с окружающими телами.

Адиабатный процесс совершается газом, находящимся в теплоизолированном сосуде. Такой сосуд препятствует всем видам теплопередачи: теплопроводности, конвекции, излучению. Пример теплоизолированного сосуда — термос.

Приблизительно адиабатным будет всякий процесс, протекающий достаточно быстро: в течение процесса теплообмен просто не успевает произойти.

При адиабатном процессе . Из первого закона термодинамики получаем: , или .

В процессе адиабатного расширения газ совершает положительную работу, поэтому (работа совершается за счёт убыли внутренней энергии). Следовательно, газ охлаждается. Если заставить газ совершить достаточно большую работу, охладить его можно весьма сильно. Именно на этом основаны методы сжижения газов.

Наоборот, в процессе адиабатного сжатия будет , поэтому 0′ alt=’Delta U > 0′ /> : газ нагревается. Адиабатное нагревание воздуха используется в дизельных двигателях для воспламенения топлива.

Кривая, изображающая ход адиабатного процесса, называется адиабатой. Интересно сравнить ход адиабаты и изотермы на -диаграмме (рис. 5 ).

работа совершенная газом равна площади

Рис. 5. Сравнительный ход изотермы и адиабаты

В обоих процессах давление убывает с увеличением объёма, но в адиабатном процессе убывание идёт быстрее. Почему?

При изотермическом расширении давление падает потому, что уменьшается концентрация частиц газа, в результате чего удары частиц по стенкам сосуда становятся реже. Однако интенсивность этих ударов остаётся прежней: ведь температура газа не меняется — значит, не меняется и средняя кинетическая энергия его частиц.

А при адиабатном расширении, наряду с уменьшением концентрации частиц, падает также и температура газа. Удары частиц становятся не только более редкими, но и более слабыми. Вот почему адиабата убывает быстрее изотермы.

Видео:Урок 167. Вычисление работы в термодинамикеСкачать

Урок 167. Вычисление работы в термодинамике

Внутренняя энергия и работа идеального газа

теория по физике ? термодинамика

Числом степеней свободы механической системы называют количество независимых величин, с помощью которых может быть задано положение системы.

Внутренняя энергия идеального газа представляет собой сумму только кинетической энергии всех молекул, а потенциальной энергией взаимодействия можно пренебречь:

U = ∑ E k 0 = N E k 0 = m N A M . · i k T 2 . . = i 2 . . · m M . . R T = i 2 . . ν R T = i 2 . . p V

i — степень свободы. i = 3 для одноатомного (или идеального) газа, i = 5 для двухатомного газа, i = 6 для трехатомного газа и больше.

Видео:Работа газа и работа над газом. ЕГЭ по физике 2023Скачать

Работа газа и работа над газом. ЕГЭ по физике 2023

Изменение внутренней энергии идеального газа в изопроцессах

Δ U = 3 2 . . · m M . . R T = 3 2 . . ν R T = 3 2 . . ν R ( T 2 − T 1 )

Температура при изотермическом процессе — величина постоянная. Так как внутренняя энергия идеального газа постоянной массы в замкнутой системе зависит только от изменения температуры, то она тоже остается постоянной.

Δ U = 3 2 . . ν R ( T 2 − T 1 ) = 3 2 . . ( p V 2 − p V 1 ) = 3 2 . . p Δ V

Δ U = 3 2 . . ν R ( T 2 − T 1 ) = 3 2 . . ( p 2 V − p 1 V ) = 3 2 . . V Δ p

Δ U = 3 2 . . ν R ( T 2 − T 1 ) = 3 2 . . ( p 2 V 2 − p 1 V 1 )

Пример №1. На рисунке показан график циклического процесса, проведенного с идеальным газом. На каком из участков внутренняя энергия газа уменьшалась?

работа совершенная газом равна площади

Внутренняя энергия газа меняется только при изменении температуры. Так как она прямо пропорциональная температуре, то уменьшается она тогда, когда уменьшается и температура. Температура падает на участке 3.

Видео:мкт РАБОТА В ТЕРМОДИНАМИКЕ внутренняя энергия идеального газаСкачать

мкт РАБОТА В ТЕРМОДИНАМИКЕ внутренняя энергия идеального газа

Работа идеального газа

Если газ, находящийся под поршнем, нагреть, то, расширяясь, он поднимет поршень, т.е. совершит механическую работу.

работа совершенная газом равна площади

Механическая работа вычисляется по формуле:

Перемещение равно разности высот поршня в конечном и начальном положении:

Также известно, что сила равна произведению давления на площадь, на которое это давление оказывается. Учтем, что направление силы и перемещения совпадают. Поэтому косинус будет равен единице. Отсюда работа идеального газа равна произведению давления на площадь поршня:

Работа идеального газа

p — давление газа, S — площадь поршня

Работа, необходимая для поднятия поршня — полезная работа. Она всегда меньше затраченной работы, которая определяется изменением внутренней энергии идеального газа при изобарном расширении:

A ‘ = p ( V 2 − V 1 ) = p Δ V > 0

Внимание! Знак работы определяется только знаком косинуса угла между направлением силы, действующей на поршень, и перемещением этого поршня.

Работа идеального газа при изобарном сжатии:

A ‘ = p ( V 2 − V 1 ) = p Δ V 0

Работа идеального газа при нагревании газа:

A ‘ = ν R Δ T = ν R ( T 2 − T 1 ) = m M . . ν R Δ T

Внимание! В изохорном процессе работа, совершаемая газом, равна нулю, так как работа газа определяется изменением его объема. Если изменения нет, работы тоже нет.

Видео:Физика. Термодинамика: Работа газа. Центр онлайн-обучения «Фоксфорд»Скачать

Физика.  Термодинамика: Работа газа. Центр онлайн-обучения «Фоксфорд»

Геометрический смысл работы в термодинамике

В термодинамике для нахождения работы можно вычислить площадь фигуры под графиком в осях (p, V).

Примеры графических задач

Основная формула
Изотермический процесс
Изобарное расширение
Изохорное увеличение давления
Произвольный процесс

Изохорное охлаждение и изобарное сжатие:

Изобарное расширение:

A ‘ = p ( V 2 − V 1 )

работа совершенная газом равна площади
Изобарное сжатие:

A ‘ = p ( V 2 − V 1 )

работа совершенная газом равна площади
Изохорное охлаждение:

работа совершенная газом равна площади
работа совершенная газом равна площади
Замкнутый цикл: 1–2:

A ‘ = ( p 1 − p 3 ) ( V 2 − V 1 )

работа совершенная газом равна площади
Произвольный процесс:

A ‘ = p 1 + p 2 2 . . ( V 2 − V 1 )

работа совершенная газом равна площади

Пример №2. На pV-диаграмме показаны два процесса, проведенные с одним и тем же количеством газообразного неона. Определите отношение работ A2 к A1 в этих процессах.

работа совершенная газом равна площади

Неон — идеальный газ. Поэтому мы можем применять формулы, применяемые для нахождения работы идеального газа. Работа равна площади фигуры под графиком. С учетом того, что в обоих случаях изобарное расширение, получим:

A 2 = p ( V 2 − V 1 ) = 4 p ( 5 V − 3 V ) = 4 p 2 V = 8 p V

A 1 = p ( V 2 − V 1 ) = p ( 5 V − V ) = 4 p V

Видно, что работа, совершенная во втором процессе, вдвое больше работы, совершенной газом в первом процессе.

работа совершенная газом равна площадиИдеальный одноатомный газ переходит из состояния 1 в состояние 2 (см. диаграмму). Масса газа не меняется. Как изменяются при этом следующие три величины: давление газа, его объём и внутренняя энергия?

Для каждой величины подберите соответствующий характер изменения:

3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

работа совершенная газом равна площади

Алгоритм решения

  1. Определить по графику, как меняется давление.
  2. Определить, как меняется объем.
  3. Определить, отчего зависит внутренняя энергия газа, и как она меняется в данном процессе.

Решение

На графике идеальный одноатомный газ изотермически сжимают, так как температура остается неизменной, а давление увеличивается. При этом объем должен уменьшаться. Но внутренняя энергия идеального газа определяется его температурой. Так как температура постоянна, внутренняя энергия не изменяется.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Один моль аргона, находящийся в цилиндре при температуре T1=600 K и давлении p1=4⋅10 5 Па, расширяется и одновременно охлаждается так, что его температура при расширении обратно пропорциональна объёму. Конечное давление газа p2=10 5 Па. Какое количество теплоты газ отдал при расширении, если при этом он совершил работу A=2493 Дж?

Видео:Физика На рисунке показана изобара газа в координатах p, V. Определите работу, совершенную газомСкачать

Физика На рисунке показана изобара газа в координатах p, V. Определите работу, совершенную газом

Как определить работу газа по графику

Внутренняя энергия газа может изменяться в результате совершения газом работы и сообщения ему теплоты. Поэтому принято говорить о двух формах передачи энергии от одних тел к другим: о теплоте и работе.

Работа газа при произвольном процессе рассчитывается как площадь криволинейной трапеции под графиком p(V). На рис. 6.1 показана произвольная зависимость давления газа p от его объема V (объем газа в начальном состоянии V 1; объем газа в конечном состоянии V 2). Площадь заштрихованной фигуры совпадает с работой, совершенной газом.

работа совершенная газом равна площади

Если зависимость p(V) представляет собой прямую линию, то работа численно равна площади прямолинейной трапеции.

В Международной системе единиц работа, совершаемая газом, измеряется в джоулях (1 Дж).

Работа газа при изобарном процессе (p = const) может быть вычислена по одной из формул:

A = p∆V, или A = νR∆T,

где p — давление газа; ΔV — изменение объема газа при переходе из начального в конечное состояние, ΔV = V 2 − V 1; V 1 — объем газа в начальном состоянии; V 2 — объем газа в конечном состоянии; ν — количество вещества (газа); R — универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К); ΔT — соответствующее изменение температуры газа, ΔT = T 2 − T 1; T 1 — абсолютная температура начального состояния; T 2 — абсолютная температура конечного состояния.

Работа газа при изохорном процессе (V = const) не совершается:

Работа газа при круговом (циклическом) процессе рассчитывается как площадь фигуры, ограниченной графиком функции p(V). На рис. 6.2 показан график произвольного кругового процесса; цифрами обозначены: 1 — исходное состояние идеального газа (оно совпадает с конечным); 2, 3 — промежуточные состояния газа.

работа совершенная газом равна площади

Площадь заштрихованной фигуры совпадает с работой, совершенной газом при циклическом процессе.

Работа, совершаемая газом за цикл, может быть:

· положительной (прямой цикл);

· отрицательной (обратный цикл).

Пример 3. График циклического процесса, происходящего с некоторой массой идеального газа, в координатах p(V) имеет вид прямых, соединяющих точки (0,0250 м 3 ; 75,0 кПа), (0,0750 м 3 ; 125 кПа), (0,0750 м 3 ; 75,0 кПа). Определить абсолютную величину работы, совершаемой газом за цикл.

Решение. На рисунке изображен график циклического процесса в указанных термодинамических координатах p(V).

работа совершенная газом равна площади

Величина искомой работы равна площади треугольника, ограниченного прямыми, соединяющими указанные точки:

A=12(125−75,0)⋅103⋅(0,0750−0,0250)=1,25⋅103 Дж=1,25 кДж.

Газ за цикл совершает работу 1,25 кДж.

Пример 4. Газ, состоящий из смеси 2,0 г водорода и 4,2 г гелия, при изобарном нагревании совершил работу 46 кДж. Во сколько раз увеличился объем газа, если его начальная температура была равна 300 К? Молярные массы водорода и гелия равны 2,0 и 4,0 г/моль соответственно.

Решение. Запишем формулу для расчета работы смеси газов при изобарном процессе:

где p — давление смеси газов (постоянная величина), p = const; V 1 — объем смеси газов в начальном состоянии; V 2 — объем смеси газов в конечном состоянии.

Давление смеси газов определяется законом Дальтона:

где p 1 — парциальное давление водорода; p 2 — парциальное давление гелия.

Давления указанных газов в смеси определяются следующими выражениями:

· парциальное давление водорода

где m 1 — масса водорода; M 1 — молярная масса водорода; T 1 — температура смеси газов в начальном состоянии; V 1 — объем смеси газов в начальном состоянии; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К);

· парциальное давление гелия

где m 2 — масса гелия; M 2 — молярная масса гелия.

Подстановка закона Дальтона и явного вида выражений для парциальных давлений водорода и гелия в формулу для работы, совершаемой смесью указанных газов, дает

Преобразование данного уравнения к виду

позволяет выразить искомое отношение объемов

Следовательно, при совершении указанной работы объем смеси увеличился в 10 раз.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9364 – работа совершенная газом равна площади| 7304 – работа совершенная газом равна площадиили читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Видео:Работа по расширениюСкачать

Работа по расширению

Условие задачи:

работа совершенная газом равна площади(V_1=2) л, (V_2=3) л, (p_1=400) кПа. Найти работу газа, совершенную в процессе 1-2-3 (схема к задаче приведена справа).

Задача №5.3.22 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

(V_1=2) л, (V_2=3) л, (p_1=400) кПа, (p_2=600) кПа, (A-?)

Видео:Физика 10 класс (Урок№23 - Внутренняя энергия. Работа. Количество теплоты.)Скачать

Физика 10 класс (Урок№23 - Внутренняя энергия. Работа. Количество теплоты.)

Решение задачи:

работа совершенная газом равна площадиРабота газа (A), совершенная в процессе 1-2-3, равна сумме работ газа в процессах 1-2 и 2-3.

Процесс 1-2 — изобарный, поэтому работу газа (A_ ) в этом процессе следует искать по такой формуле (численно работа равна площади фигуры под графиком процесса, на схеме к решению — заштриховано):

Процесс 2-3 — изохорный, работа газа (A_ ) в этом процессе равна нулю, так как газ не изменяет своего объема (площадь фигуры под графиком этого процесса в координатах p-V также равна нулю).

В итоге формула (1) примет такой вид:

Переведём объемы газа (V_1) и (V_2) в систему СИ:

Видео:Физика 10 класс. Работа в термодинамикеСкачать

Физика 10 класс. Работа в термодинамике

Ответ: 400 Дж.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Какую работу совершает газ при переходе из состояния 1 в состояние 3? (Ответ дайте в кДж.)

На диаграмме p—V работе, совершаемой газом при переходе из начального состояния в конечное, соответствует площадь под линией, изображающей процесс перехода.

Для процесса 1—2—3 эта площадь показана на рисунке штриховкой. Таким образом, при переходе из состояния 1 в состояние 3 газ совершает работу

работа совершенная газом равна площади

Какую работу совершает газ при переходе из состояния 1 в состояние 3? (Ответ дайте в кДж.)

На диаграмме p—V работе, совершаемой газом при переходе из начального состояния в конечное, соответствует площадь под линией, изображающей процесс перехода. Для процесса 1—2—3 эта площадь показана на рисунке штриховкой. Таким образом, при переходе из состояния 1 в состояние 3 газ совершает работу

работа совершенная газом равна площади

Поясните,почему умножение идет 2х10^5 ,когда газ совершает работу от 1 до 2, вроде должно быть 1х10^5,а по ответу получается от 0 до 2.

На участке 1-2 вообще не совершается работа, так как объем газа на этом этапе не изменяется. Вся работа совершается на участке 2-3. Общее правило следующее, если процесс изображен на диаграмме работа совершенная газом равна площади, то работа равна площади под графиком со знаком плюс, если объем увеличивается, и со знаком минус, если уменьшается. Для тепловой машины, работающей по циклу, полезная работа равна площади ограниченной этим циклом, это укладывается в ранее озвученное правило. Когда мы идем по «верхней» части цикла, работа идет в +, потом возвращаемся по «нижней» в исходную точку, работа теперь идет в -, в результате остается только кусок внутри.

Алексей, вот Вы сказали, что «на участке 1-2 вообще не совершается работа, так как объем газа на этом этапе не изменяется.»

а на участке 2-3 ведь не меняется давление.Так почему работа там совершается? Разве не A=pV ?

Не, не так. Давайте разбираться.

Будем выводить формулу, по которой можно посчитать работу совершенную газом. Когда газ работает? Когда он что-то перемешает. Для этого должен как-то меняться его объем. Например, газ расширяется и толкает поршень вверх, а с ним и какой-то груз, вот Вам и работа. То есть без изменения объема нет работы.

Чтобы вывести формулу, рассмотрим модельную задачу. Рассмотрим цилиндрический сосуд с газом. Пусть сосуд закрыт подвижным поршнем площади работа совершенная газом равна площади. Давление газа равно работа совершенная газом равна площади. Определим, какую работу совершит газ, когда поршень сдвинется на малое расстояние работа совершенная газом равна площади. Так как это работа на малом перемещении, то назовем ее элементарной работой и обозначим через работа совершенная газом равна площади. Работа газа равна произведению силы, с которой он давит на поршень, на перемещение поршня (газ давит нормально, поэтому косинуса не возникает): работа совершенная газом равна площади. Но сила, с которой газ давит на поршень связана с давлением газа соотношением: работа совершенная газом равна площади. Если перемещение поршня мало, то можно считать, что давление газа не изменяется сильно и что оно остается постоянным. Тогда: работа совершенная газом равна площади. Но работа совершенная газом равна площади— это как раз изменение объема газа работа совершенная газом равна площади. Окончательно имеем: работа совершенная газом равна площади.

Получив эту формулу, можно забыть о том, как она выводилась (про сосуд и поршень), она оказывается верной для любого малого изменения объема.

Теперь, чтобы найти работу на конечном изменении объема нужно просуммировать работы по малым изменения, в математике это делается при помощи интеграла: работа совершенная газом равна площадиЕсли внимательно приглядеться, то тут можно как раз увидеть площадь под линией процесса на диаграмме работа совершенная газом равна площади. Вот почему говорят, что для поиска работы надо искать площадь под графиком на этой диаграмме.

Для частных случаев формула приобретает вид:

1) при изобарном процессе давление выносится за знак интеграла и получаем: работа совершенная газом равна площади

2) при изохорном объем не изменяется, поэтому пределы интегрирования совпадают, интеграл равен нулю, работа равна нулю.

3) при изотермическом процессе, давление уже изменяется с объемом, поэтому надо добавить в рассмотрение уравнение Клапейрона-Менделеева: работа совершенная газом равна площади. Следовательно, работа совершенная газом равна площади. А значит работа при изотермическом процессе равна: работа совершенная газом равна площади

💥 Видео

Урок 169. Задачи на вычисление работы в термодинамикеСкачать

Урок 169. Задачи на вычисление работы в термодинамике

Работа, совершаемая при термодинамических процессах. Практическая часть. 10 класс.Скачать

Работа, совершаемая при термодинамических процессах. Практическая часть. 10 класс.

Термодинамика | работа совершаемая термодинамической системойСкачать

Термодинамика | работа совершаемая термодинамической системой

Работа идеального газа..Все виды задач на ЕГЭ.39 задачи.9 задание ЕГЭ физика.Скачать

Работа идеального газа..Все виды задач на ЕГЭ.39 задачи.9 задание ЕГЭ физика.

31. Работа газа при различных процессахСкачать

31. Работа газа при различных процессах

Физика 10 класс Работа в термодинамикеСкачать

Физика 10 класс Работа в термодинамике
Поделиться или сохранить к себе: