- Что такое освещенность, цветовая температура, яркость света: расчет и нормы освещенности
- Какие фотометрические величины используются при расчетах освещения
- Световой поток
- Световая отдача
- Видео: Что такое световая отдача, и каково практическое применение этого параметра?
- Сила света
- Яркость света
- Освещенность поверхности
- Цветовая температура
- Проведение самостоятельных расчетов.
- Общая формула для проведения расчетов
- Находим коэффициент использования светового потока
- Калькулятор для определения индекса помещения.
- Таблицы для определения коэффициента использования светового потока
- Калькулятор расчёта необходимого светового потока источников света
- В чем измеряется освещенность
- Главные характеристики света
- Как перевести люксы в люмены
- Нормы и порядок расчета
- Расчет светового потока
- Чем измеряют степень освещенности
- Цифровые устройства.
- Важные моменты.
- Измерение светового потока
- Норма освещенности жилого помещения
- Расчет освещенности для помещений
- Диапазон измерения освещенности
- Освещение, необходимое на 1 м2
- Ошибки при расчете
- Люмен и ватт
- Как измерить яркость освещения
- Люксометр
- Нормы освещения для разных помещений
- Сила света
- Пример выражения яркости (лм) через силу света (Кд)
- Приборы для измерения уровня освещенности
- Понятие освещенности
- Расчет количества светодиодных ламп для помещения
- Как правильно измерять освещенность в разных помещениях
- Организация освещения в жилых помещениях
- Фотометрия
Видео:Что такое освещенность и сколько светильников нужно в помещении? / ПроОсвещение #1Скачать
Что такое освещенность, цветовая температура, яркость света: расчет и нормы освещенности
Трудно встретить человека, который не разбирался бы в мерах длины, площади, объема, веса. Не вызывает сложностей исчисление времени, определение температуры. Но вот если спросить кого-нибудь о фотометрических величинах, то в большинстве случаев внятного ответа ожидать не приходится. А между тем, с освещением, естественным или искусственным, мы живём в постоянном контакте. Значит, надо научиться и его оценивать каким-то образом.
Безусловно, такая оценка производится всегда и всеми, но чаще всего – чисто на уровне субъективного восприятия: достаточно света или нет. Однако, подобная «градация» именно что субъективная, и может давать существенные ошибки. Последствия таких некорректных оценок нельзя недооценивать — и недостаточность освещения, и его избыточность негативно влияют и на органы зрения человека, и на его психоэмоциональное состояние.
А между тем, существует специальная величина – освещенность, значение которой регламентируется законодательными актами в области строительства и санитарии. То есть освещенность это как раз тот критерий качества, позволяющий правильно оценить организацию системы освещения помещений. В этой статье мы как раз и поговорим об этом параметре и связанными с ним другими фотометрическими величинами, посмотрим, как это можно использовать в практическом приложении.
Видео:Освещённость поверхностиСкачать
Какие фотометрические величины используются при расчетах освещения
По укоренившейся привычке многие продолжают считать, что оценку освещенности помещения можно производить в единицах измерения энергии – ваттах. Такое заблуждение легко объяснимо – в наследство от времен полного господства ламп накаливания нам остался этот устойчивый стереотип.
Лампы накаливания выпускались различной потребляемой мощности – 15, 25, 40, 60, 75, 100, 150 и более ватт. И каждый хозяин дома или квартиры на собственном опыте знал, что для нормального освещения в гостиной, например, он должен ввернуть в люстру три лампочки по 60 ватт, для настольной лампы достаточно будет «сороковки», в кухню нужно приобрести стоваттную и т.д.
Кстати, явным наследием этого до сих пор остаётся практика, применяемая производителями ламп – указывать на их упаковке, кроме потребляемой мощности, светоотдачу, выраженную в эквиваленте мощности старых ламп накаливания.
Так что запомним первое – в ваттах ни световой поток, излучаемый лампой, ни получающаяся от нее освещенность поверхности не измеряются. Указанные на корпусе прибора ватты – это количество потребленной лампой электроэнергии, которая путем тех или иных физических преобразований превращается в видимый свет.
Некоторые люди старшего поколения вообще уверены, что световая отдача осветительного прибора измеряется в свечах. Кстати, это не столь далеко от истины, а почему – станет понятно ниже. Но это опять же – никак не освещенность.
Так что имеет смысл рассмотреть основные фотометрические величины по порядку, от источника света к освещаемой поверхности. Сразу оговоримся – тема эта довольно сложная для восприятия неподготовленным человеком. Поэтому постараемся максимально упростить изложение, не будем его перегружать громоздкими формулами. Так, чтобы просто сложилось общее понимание вопроса.
Световой поток
Свет, как известно, имеет волновую природу. В определённом диапазоне длин волн электромагнитное излучение воспринимается органами зрения человека, то есть становится видимым. Примерные границы этого диапазона – от 400÷450 нм (красная часть спектра) до 630÷650 (фиолетовая область).
Электромагнитные волны являются переносчиком энергии – именно энергия Солнца обеспечивает жизнь на Земле. Но отвлечёмся от астрономических категорий, вернемся к обычным источникам света.
Итак, раз источник излучает свет, то это означает излучение и перенос определённой энергии. Количество этой лучистой энергии (We), перенесенной в единицу времени, носит название лучистого потока (Фе). И измеряется он в ваттах.
Однако, речь идет об освещении, то есть восприятии цвета человеческим зрением. И оценить количество энергии «на глаз» — это сразу заложить большую погрешность. Например, два источника, обладающих равной мощностью излучения, но с разным цветом свечения, будут восприниматься глазом тоже по-разному.
Чтобы унифицировать этот параметр, введена специальная физическая величина – световой поток (Ф). Это тоже показатель мощности лучистого потока, но только той его части, что воспринимается среднестатистическим здоровым человеческим глазом.
Измеряться световой поток также может в ваттах (это, скорее, энергетический показатель), или в люменах (световой показатель). На практике обычно применяются люмены.
Для точного значения одного люмена в качества эталона взято излучение из центральной, зеленой части видимого спектра, длиной 555 нм.
Итак, принято, что лучистый поток с длиной волны 555 нм величиной 1 ватт соответствует 683 люменам. Почему такой странный коэффициент? Просто окончательное утверждение этой единицы в системе СИ состоялось в 1979 году, а первые опыты по фотометрии с введением показателя светового потока начали производиться задолго до этого. В ту пору, когда электрического освещения еще не существовало, и более-менее стабильным, «эталонным» источником света служила обычная свеча. И сложившееся соотношение энергетического ватта и светового люмена было со временем пересчитано и перешло до наших дней.
Еще раз напомним — упомянутые выше ватты, которыми также может измеряться световой поток, не имеют никакого отношения к тем, что указаны на упаковке лампы. Там показывается потребление светильника, то есть то количество энергии, которое он «заберет» из сети. Нас же должна больше волновать его энергетическая световая отдача – какое количество видимой лучистой энергии он «выдаст». Так что гораздо правильнее будет при выборе лампы обращать внимание не на эфемерные сравнительные аналогии в ваттах, а на четко указанное значение светового потока в люменах.
Световая отдача
Это – очень интересная в практическом плане величина, так как она, по сути, характеризует эффективность источника света. Важно выбирать лампу не исходя из ее потребляемой электрической мощности, а из того, как эта мощность расходуется при преобразовании в световую энергию.
Итак, величина светоотдачи показывает, какой световой поток вырабатывается лампой при преобразовании одного ватта затраченной энергии. Понятно, что и измеряется она в люменах на ватт (лм/Вт).
Преобразование одного вида энергии в другой производится по-разному. Например, в привычных лампах накаливания применен резистивный принцип – свечение вызывает раскаленная спираль с большим электрическим сопротивлением. Понятно, что это сопровождается огромными тепловыми потерями. Более эффективными являются современные осветительные приборы, основанные на принципах свечения полупроводниковых матриц при пропускании тока или специально подобранных газовых смесей при их ионизации. Здесь на ненужный нагрев расходуется значительно меньше затраченной энергии.
Выше уже говорилось, что пик нормального восприятия света человеческим глазом приходится на длину волны в 555 нм. И в идеальных условиях, при полном преобразовании электрической энергии в монохроматический световой поток указанной длины волны, то есть при совершенном отсутствии потерь, теоретически возможно добиться светоотдачи в 683 лм/Вт. Это называется идеальным источником света, которого в природе, увы, не существует.
В таблице ниже приведены сравнительные характеристики для наиболее применяемых в быту ламп – накаливания, люминесцентных и светодиодных. Хорошо видно, насколько экономичнее становится использование современных источников света, то есть как возрастает показатель светоотдачи.
(Значения в таблице указаны примерные. В любой из категории ламп могут быть отклонения в ту или иную сторону – это зависит от качества конкретной модели. Но общую картину таблица представляет довольно наглядно).
Световой поток, Лм | Лампы накаливания | Люминесцентные лампы | Светодиодные лампы | |||
---|---|---|---|---|---|---|
Потребляемая мощность, Вт | Светоотдача, лм/Вт | Потребляемая мощность, Вт | Светоотдача, лм/Вт | Потребляемая мощность, Вт | Светоотдача, лм/Вт | |
250 | 20 | 12.5 | 5÷7 | 41.7 | 2÷3 | 100 |
400 | 40 | 10 | 10÷13 | 36.4 | 4÷5 | 88.9 |
700 | 60 | 11.7 | 15÷16 | 45.2 | 6÷10 | 87.5 |
900 | 75 | 12 | 18÷20 | 47.4 | 10÷12 | 81.8 |
1200 | 100 | 12 | 25÷30 | 43.6 | 12÷15 | 88.9 |
1800 | 150 | 12 | 40÷50 | 40 | 18÷20 | 94.7 |
2500 | 200 | 12.5 | 60÷80 | 38.5 | 25÷30 | 90.9 |
Конкретное значение светоотдачи не всегда, но все же указывается некоторыми производителями ламп на их упаковке. Это может быть надпись «светоотдача» или же «Lighting effect». Если нет, то его несложно определить и самому, разделив паспортный световой поток на указанную потребляемую мощность.
Совершенно очевидно, что из всех ламп, применяемых в бытовых условиях, наилучшими показателями светоотдачи обладают светодиодные приборы – у них этот показатель доходит до 100 лм/Вт, и даже может быть несколько выше. Но прогресс не стоит на месте, и разработчики заявляют о скором выходе в серийное производства ламп со светоотдачей порядка 200 лм/Вт. Но до идеального источника еще ой как далеко…
Кстати, ученым удалось оценить световую отдачу Солнца, и она – не столь высока: примерно 93 лм/Вт.
Про световую отдачу источников света различного типа рассказывается и в предлагаемом видеосюжете:
Видео: Что такое световая отдача, и каково практическое применение этого параметра?
Сила света
В физике есть понятие точечного источника света – он распространяет излучение совершенно одинаково во всех направлениях. На практике такое если и бывает, то крайне редко, да и то – с некоторым упрощением понятий. На деле световой поток в разные стороны бывает неравномерен. И чтобы оценить, скажем так, его пространственную плотность, оперируют величиной силы света. А чтобы разобраться, что это такое, придется вспомнить еще и понятие телесного угла.
Начнем именно с геометрии. Итак, телесный угол – это часть пространства, объединяющая все лучи, исходящие из одной точки и пересекающую определенную поверхность (ее называют стягивающей поверхностью). В фотометрии, понятно, это освещаемая поверхность. Измеряется этот угол в особых величинах – стерадианах (ср), и обычно в формулах обозначается символом Ω.
Величина телесного угла – это отношение площади стягивающей поверхности к радиусу сферы.
Ω = S/R²
То есть если взять, к примеру, сферу с радиусом один метр, то телесный угол в один стерадиан «вырежет» на ее поверхности пятно площадью один квадратный метр.
Для чего это знать? Дело в том, что понятие силы света напрямую связано с телесным углом. А конкретно – световой поток в один люмен, распространяющийся в пространстве, ограниченном телесным углом в один стерадиан, обладает силой света в одну канделу. Математически эта зависимость выглядит так:
I = Ф/ Ω
А если говорить об энергетической силе света, равной одной канделе, то это 1/683 Вт/ср.
Кстати, кандела – это одна из семи основных величин системы СИ.
Кандела в буквальном переводе с латинского означает свечу. Это как раз тот «пережиток прошлого», о котором уже говорилось выше, но зато он очень наглядно показывает всю взаимосвязь величин.
Поясним на рисунке:
Итак, имеется точечный источник света – свеча. Ее горящий фитиль излучает свет силой в одну канделу (поз. 1).
В пространстве, ограниченном телесным углом, равным одному стерадиану (поз. 2), будет при этом распространяться световой поток (поз. 3), равным одному люмену. На некотором расстоянии от источника (радиусе сферы – поз. 4) этот поток освещает поверхность определённой площади (поз. 5). Забегая вперёд сразу скажем, если площадь равна одному квадратному метру, то что при таких условиях в этом «световом пятне» обеспечивается освещенность, равная одному люксу (лк).
Если вернуться к свече, как к эталонному источнику света, то несложно рассчитать и ее общий световой поток. Полная сфера имеет телесный угол, равный 4π, то есть, с небольшим округлением, он равен 12.56 стерадиан. А это значит, что свеча, излучающая во все стороны свет силой в одну канделу, дает общий световой поток, равный 12.56 люмен.
Интересно, что еще не столь давно излучающую способность источников света и оценивали «в свечах». Например, говорили – нужна «лампочка на шестьдесят свечей». Продавцы и покупатели прекрасно понимали друг друга – приобреталась лампочка накаливания на 60 Вт, хотя, по сути, эти величины никак между собой в данном случае, с точки зрения физики, не связаны. И что забавно – это было близко к истине.
Давайте посмотрим – 60 свечей по 12,56 люмен дадут в сумме 753,6 люмена. Заглянем в таблицу выше – лампа накаливания с потреблением 60 ватт обладает световым потоком в примерно в 700 люмен. Совсем рядышком!
Но, повторимся, правильна оценка источников света все же должна осуществляться в люменах.
Яркость света
Стоит рассмотреть еще один параметр – это яркость источника света. Дело в том, что с точечными источниками дело иметь практически не приходится. То есть большинство источников обладает какой-то определенной излучающей поверхностью. И при равном световом потоке, но отличающейся площади излучения света, зрением это будет восприниматься по-разному.
То есть, по сути, яркость – эта сила света, излучаемого с определенной единицы площади видимой поверхности источника света.
Понятно, что единицей яркости будет кандела на квадратный метр.
Это важная величина, так как органы зрения, если смотреть на источник света, реагируют, скорее, не на силу света как таковую, а именно на яркость. При большой ее величине (свыше 160 тыс. кандел на квадратный метр) свет может вызвать раздражение глаз, болезненные ощущения, слезливость. Поэтому производители осветительных приборов и выпускают лампы с матовыми колбами. Практически без потери светового потока, излучение идет не конкретно от волоска накаливания или светодиода с их небольшими площадями, а с куда большей по площади поверхности колбы. Такое свечение значительно безопаснее для сетчатки глаза, воспринимается зрением намного комфортнее.
Освещенность поверхности
Вот, наконец, добрались мы и до освещенности. Эту величину можно считать самой прикладной, так как именно освещенностью того или иного участка оценивается общая работа осветительных приборов.
Образно выражаясь, освещенность (Е) – это поверхностная плотность светового потока (Ф), распределенного на той или иной площади (S). Если подходить с некоторым упрощением, то это можно выразить такой формулой:
Как мы видели выше, один люмен светового потока на площади в один квадратный метр создает освещенность, равную одному люксу (лк).
Зависит освещенность от целого ряда факторов, если даже не принимать во внимание собственные характеристики источника света.
- Во-первых, чем дальше расположен источник от освещаемой поверхности, тем больше площадь «светового пятна» (вспоминаем конус телесного угла). То есть световой поток распределяется по большему участку. Причём, как мы помним, эта зависимость – квадратичная. То есть при изменении расстояния вдвое, освещённость снизится в четыре раза, втрое – в девять раз, и т.п.
Если рассматривать точечный источник, то можно применить формулу Кеплера:
О значении входящих в формулу величин повторяться не будем – они приведены выше.
- Во-вторых, показанная выше формула Кеплера справедлива лишь для поверхности, перпендикулярной направлению светового потока. На деле, безусловно, так бывает нечасто. То есть в том случае, когда освещаемая плоскость расположена под каким-то углом α к направлению потока, приходится делать поправку и на это:
Вспомните – когда вам необходимо максимально ярко осветить поверхность, вы направляете фонарь перпендикулярно к ней. Но если его расположить под углом – освещенность резко упадет, так как свет как будто «размазывается» по поверхности.
- В-третьих, освещенность конкретного участка зависит еще и от его, так сказать, окружения. Дело в том, что большинство поверхностей не поглощают весь попадающий на них свет, а в значительной степени отражают его. И тем самым сами становятся своеобразными источниками света.
Вспомним что говорилось в разделе про яркость свечения. Да, действительно, яркость таких подсвеченных участков бывает не особо высока. Но зато излучение идет с приличной площади, и в итоге создается весьма значимый световой поток.
А яркость такой подсвеченной поверхности зависит и от ее освещенности, и от диффузно-отражающей способности, которая имеет отдельное название – альбедо. Чем выше это альбедо, тем ярче свечение. А раз ярче – то и больше изучаемый «вторичный» цветовой поток.
Несколько наглядных примеров отраженного света. Лист белой бумаги при освещённости всего в 50 люкс будет иметь яркость в 15 кд/м². Свечение полной луны (а это, как мы знаем – отраженный от ее поверхности солнечный свет) характеризуется яркостью в 2500 кд/м². А поверхность чистого белого снега в солнечный день достигает яркости до 3000 кд/м². Немало!
Это явление очень широко используется при организации освещения и в дизайнерском оформлении комнат. Выпускаются целые модельные линейки светильников, специально рассчитанных на направленность в сторону стен или потолка, то есть «в работу» по общему освещению помещения включаются именно подсвеченные участки. Этот же эффект применяется при создании многоярусных потолочных конструкций со светодиодной ленточной подсветкой.
Несложно догадаться, что освещенность помещения будет зависеть и от выбранного стиля его отделки. Одна и та же лампочка, скажем, в белой комнате даст куда большую освещенность, чем в выкрашенной в темных тонах.
Так как конечным ожидаемым результатом работы осветительных приборов является создание комфортных и безопасных для здоровья показателей освещения в помещении, именно значение освещенности поверхностей и подлежит регламентации. В законодательных актах (СНиП и СанПиН) указывается, какая освещенность должна достигаться в различных помещениях, в зависимости от их предназначения.
Так, действующим СНиП 23-05-95 в его актуализированной редакции (Свод Правил СП 52.13330.2011 ) указанные следующие нормативные показатели освещенности для жилых домов:
Тип (предназначение) помещения | Нормы освещенности в соответствии с действующими СНиП, люкс |
---|
При этом оценка освещенности должна вестись на горизонтальной плоскости на высоте пола. Для лестниц – как на высоте пола, так и на переходных площадках и ступенях.
Для оценки уровня освещенности применяются специальные приборы – люксметры. Они состоят из фотоприемника со сферической поверхностью датчика, и блока-преобразователя с аналоговой (стрелочной) или цифровой индикацией показаний.
Понятно, что люксметр – это узкопрофессиональный дорогостоящий прибор, которым пользуются специалисты, и иметь который дома совершенно не требуется. Но разбираться в вопросах основных фотометрических величин – не помешает любому хозяину дома или квартиры.
Зачем? — могут спросить многие. Да хотя бы для того, чтобы суметь самостоятельно спланировать использование тех или иных источников света, чтобы добиться нужной освещённости. Ведь от нее напрямую зависит здоровье и общее настроение всех членов семьи.
О практическом положении этих знаний как раз пойдет речь в следующем разделе публикации.
Цветовая температура
Чтобы закончить разговор об основных характеристиках источников света, необходимо остановиться и на их цветовой температуре.
При совершенно равных показателях излучаемого светового потока одна лампочка может давать тёплый желтоватый цвет, другая – белый нейтральный, а третья, например – светиться холодным оттенком синевы. Как их различить по этому параметру? Для этого разработана специальная шкала цветовой температуры.
Сразу оговоримся – здесь нет никакой связи между температурой воздуха в помещении или температурой нагрева самого источника света. Просто в качестве эталона взято свечение физического тела, разогретого до больших температур.
Любое тело, если его температура выше абсолютного нуля, само по себе является источником инфракрасного излучения. По мере роста температуры, длина волны этого излучения меняется, и в определенный момент доходит до видимого участка спектра.
Это, наблюдал, наверное, каждый – металлический пруток при нагревании сначала краснеет, затем начинает светиться ярко-красным светом, можно его раскалить, как говорят, и «добела». А при выполнении электросварочных работ, когда температура дуги достигает очень высоких показателей, плавящийся метал может приобрести и голубой оттенок.
Именно эта градация и положена в основу шкалы цветовой температуры. Она указывается в Кельвинах – а по шкале можно увидеть, какое свечение будет излучать лампа.
Эта цветовая температура обычно указывается в маркировке ламп. Иногда она сопровождается и текстовым пояснением, или даже миниатюрной шкалой, показывающей, в какой области видимого спектра будет светиться лампа.
Выбор ламп по их цветовой температуре зависит от того, какую обстановку планируется поддерживать в помещении. Безусловно, здесь будет играть немалую роль и субъективный фактор – то есть предпочтения хозяев. И готовых «рецептов» на этот счет нет. Но в таблице ниже приведен рекомендательный обзор ламп по их свечению. Возможно, это кому-то поможет при выборе.
Цветовая температура | Зрительное восприятие | Возможные определения создаваемой атмосферы | Характерные области применения |
---|
Видео:Расчет освещенностиСкачать
Проведение самостоятельных расчетов.
Как и было обещано, в этом разделе публикации будет рассмотрен алгоритм проведения расчета освещенности. Точнее, если быть более корректным, расчет имеет как раз обратную направленность. То есть нормальное значение освещенности нам уже известно. И вычисления должны нас привести к результату, сколько ламп и с каким световым потоком потребуется для его обеспечения.
Общая формула для проведения расчетов
Итак, начнем с той формулы, которая будет у нас служить основой расчетов.
Fл = (Ен × Sп × k × q) / (Nc × n × η)
Fл — это световой поток лампы, которую требуется установить в светильник. То есть эта та самая величина, которая поставлена целью проведения вычислений.
Ен — нормативная освещённость поверхностей, в зависимости от типа помещения. Она соответствует параметрам, установленным СНиП и приведенным выше в таблице.то есть отталкиваемся именно от нормативного значения.
Sп — площадь освещаемой поверхности. Обычно здесь фигурирует площадь комнаты, если рассчитывается общее освещение. Но если целью ставится расчет освещенности локального участка (например, рабочей зоны), то подставляется именно площадь этой зоны.
k — корректирующий коэффициент, который часто называют коэффициентом запаса. Его введением учитывается сразу несколько обстоятельств, влияющих на световую отдачу ламп. Во-первых, многие лампы со временем начинают растрачивать свой излучающий потенциал, попросту говоря – тускнеть. Во-вторых, на излучающую способность могут влиять и некоторые внешнее факторы – это запыленность помещения или, скажем, высокая концентрация пара, препятствующая свободному распространению световых лучей.
Коль речь у нас идет о жилых помещениях, где плотный пар стоять не должен, а пыль удаляется регулярными уборками, то вторую группу факторов можно сбросить со счетов. А по постепенной потере излучающей способности коэффициент для разных типов ламп можно принять следующим:
— лампы люминесцентные (газоразрядные): 1.2;
— обычные лампы накаливания и «галогенки»: 1.1;
— лампы светодиодные: 1.0.
q — коэффициент, учитывающий неравномерность свечения некоторых типов ламп. Он принимается равным:
— для ламп накаливания и газоразрядных ртутных ламп: 1.2;
— для компактных люминесцентных ламп накаливания и светодиодных источников света: 1.1.
Переходим к знаменателю дроби.
Nc — количество осветительных приборов, планируемых к установке в помещении или в отдельной зоне, для которой проводится расчет.
n — количество рожков в планируемом к установке светильнике.
Наверное, понятно, что произведение последних двух величин показывает, какое же количество ламп планируется к установке. Например, устанавливается одна пятирожковая люстра. Тогда Nc =1, а n =5. Или планируется осветить помещение двумя приборами, каждый по три лампочки: Nc =2, а n =3, Но если освещение будет осуществляться одним прибором с одной лампой, что обе эти величины будут равны единице.
η — коэффициент использования светового потока. Эта поправочная величина учитывает множество факторов, касающихся как особенностей помещения, так и специфики планируемых к установке осветительных приборов.
Так как именно этот коэффициент пока что остается неизвестной величиной, с него и следует начать проведение расчётов.
Находим коэффициент использования светового потока
Эту величину можно назвать табличной эмпирической. Она зависит и от площади помещения, и от расположения светильника, и от основного направления светового потока, и от отделки поверхностей потока, стен и пола.
Прежде всего для входа в таблицу придется определить так называемый индекс помещений. Он учитывает размеры помещения, причём, именно в соотношении длины и ширины, так как в квадратной комнате и в вытянутой прямоугольной световой поток все же будет распространяться по-разному. И второе – он учитывает высоту расположения светильника над освещаемой поверхностью. Как мы помним – по требования СНиП оценка освещенности ведется по горизонтальной плоскости на уровне пола.
Важно – иногда путают высоту потолка в комнате с высотой установки светильника. А это все же не одно и то же! Например, осветительный прибор может быть закреплён на стене (бра), установлен на стойке или размещен на столе или тумбочке (торшер или настольная лампа), подвешен к потоку на определенном расстоянии от потолочной поверхности (люстра).
Формула, наверное, ни о чем не скажет. Лучше предложим воспользоваться для определения этого индекса помещения онлайн-калькулятором.
Калькулятор для определения индекса помещения.
Перейти к расчётам
Итогом расчетов станет какая-то дробная величина. Ее приводят в ближайшую сторону к следующим значениям: 0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,1, 1,25; 1,5; 1,75; 2,0; 2,25; 2,5; 3,0; 3,5; 4,0; 5,0. Почему именно к ним? Да, четно говоря, просто потому, что именно такая градация принята в таблицах, расположенных ниже.
Таблицы для определения коэффициента использования светового потока
Для входа в таблицу необходимо будет еще оценить отражающую способность поверхностей в помещении (помните, говорилось о некотором альбедо, способствующим освещенности или, наоборот, приглушающим ее).
Отражающую способность поверхностей, в зависимости от цвета их отделки, можно принять следующую:
Оттенки интерьерной отделки | Коэффициент отражающей способности |
---|
Для пользования таблицей следует сразу оценить отделку комнаты в порядке: потолок – стена – пол в процентах отражающей способности. Понятно, что здесь придётся проявить определённую сообразительность – с белым и черным цветов ясность есть, а вот с остальным необходимо подумать, отнести их больше к светлым, средним или темным тонам. Но для человека с нормальным восприятием цвета это не должно стать проблемой.
Следующим шагом следует определить тип светильника, планируемого к установке – предложено пять различных вариантов. Именно этот критерий поможет выбрать нужную таблицу. (все таблицы размещены в правом столбце. Изображения «кликабельны», то есть увеличатся до нормального размера при клике мышкой).
Ну и уже по этой выбранной таблице, на основании всех собранных данных, находится коэффициент.
Особенности осветительного прибора и его размещения | Иллюстрация | Таблицы для определения коэффициента использования светового потока. (Выбранная таблица увеличится при клике мышкой). |
---|
Основное направление света – вниз.
Такой же эффект дает и просто повешенные лампы без плафона
Просто для примера. Планируется к установке на потолочный поверхности подвесной светильник с плафоном, дающим преимущественное распространение света вниз. Находим устраивающую нас таблицу. Вот она:
Проведённым ранее расчётом определили индекс помещения. Допустим, он равен 1.0.
По оценке отделки получаем следующее соотношение – 70% (белый потолок), 30% (темно-бежевые стены, которые можно отнести к средним тонам), 10% (темный, близкий к черному пол).
По этим значениям находим пересечение столбцов и строки (пример показан на иллюстрации), и получаем искомое значение коэффициента использования светового потока, равное 0,30.
Всё, теперь у нас есть уже все данные для проведения окончательного расчета. И для него можно, опять же, воспользоваться встроенным онлайн-калькулятором.
Калькулятор расчёта необходимого светового потока источников света
Перейти к расчётам
Полученное значение показывает, какой должен быть световой поток у ламп, которые обеспечат необходимую норму освещенности в помещении.
Что можно добавить напоследок?
- Если расчет ведётся для какой-то ограниченной зоны, например, для подсветки рабочей области в мастерской или гараже, то и значения площади берутся только для нее. И расположение и тип светильников также – только те, которые будут освещать именно этот участок. То есть исходим из принципа автономности – рабочая зона должна быть нормально освещена даже при полностью выключенном общем освещении. Это же касается и других локальных участков – письменного стола, выделенного места для рукоделия в кресле под торшером и т.п.
- Нормальная освещенность довольно часто в повседневной жизни выглядит избыточной. Например, человеку просто хочется побыть одному в полумраке, или просто для просмотра телепередач яркий свет не требуется. Значит, можно и нужно предусмотреть зональную дополнительную подсветку (на которую уже не будут распространяться санитарные нормы), или установить диммер, с помощью которого можно изменять излучаемый световой поток осветительных приборов.
- В публикации уже не раз подчеркивалось, и проведение расчета – тому лишнее подтверждение, что определяющим критерием при выборе ламп для обеспечения требуемой освещенности должен являться именно световой поток. Но про потребляемую мощность тоже забывать не следует.
Дело в том, что многие светильники имеют ограничения по этому параметру. Например, в паспорте изделия указано, что максимальная суммарная мощность не должна превышать 60 ватт. Это может быть вызвано ограниченной термостойкостью пластиковых деталей светильника или малым сечением проводов, проложенных в нем. То есть и потребляемую мощность ламп также следует учитывать. Если же она получается выше допустимого значения, значит, придется подыскивать другой светильник.
Может случиться и так, что расчетный световой поток получился столь высоким, что таких ламп в ассортименте магазинов попросту нет. Значит, планируемое количество источников света — недостаточное. Придется рассматривать варианты с увеличением количества светильников, или же со светильниками с большим количеством рожков.
Видео:Поляризация света и закон МалюсаСкачать
В чем измеряется освещенность
Видео:Лекция 3. Программирование освещения. Модель ФонгаСкачать
Главные характеристики света
Человек видит спектр цветов – малую часть диапазона электромагнитных волн. Его характеристики влияют на комфортность среды пребывания и самочувствие человека. Существует определение для одного из свойств – световой поток (Ф), который измеряют в люменах (лм). Мощность светового потока источника характеризует вызванное ощущение восприятия света. По его распределению для замкнутого пространства выделяют потоки света: прямого, рассеянного, отраженного. Чем больше света, тем выше число люменов.
Важно! Этот параметр не определяет интенсивность, яркость или производительность свечения, потому что учитывает весь рассеянный поток. Для того, чтобы измерить световой поток требуется много времени и при этом нужно учитывать пространственные характеристики явления
Основные характеристики светоизлучений
Главная характеристика источника – сила света (I), определяющая интенсивность излучения в направлении потока. Она вычисляется через частное светового потока (Ф) и телесного угла (ꭥ) в стерадианах (ср), внутри которого распределяется. В СИ единицу измерения силы света, кандела, обозначают кд, cd.
Телесный угол
Важно! Восковая свеча излучает с около одной канделы (от лат. candela), и ранее эта единица измерения называлась «свечой»
Величина кандел показывает световое излучение точечного источника света на самом интенсивном его направлении.
Покупатели ламп обычно оценивают яркость по мощности потребления (Вт) источника. При хорошей яркости получается четкое и контрастное видение предметов. Однако и слабый, и очень яркий свет неблагоприятен для деятельности человека. Яркость (L) определяется плотностью силы света в направлении поверхности и вычисляется делением I на площадь проекции на перпендикулярную поверхность (зависит от cos угла).
Измеряют показатель яркости (L) света в кд/м². Главной характеристикой восприятия светового ощущения глазами является яркость освещаемой поверхности или источника.
Единицы измерения света
Световая отдача (H) фиксирует экономичность преобразования электрической мощности в световую. При переходе от электрической энергии к световой появляются потери, что вызывает снижение показателей яркости излучения. Измеряют световую отдачу в люменах на ваттах. Можно вычислить световой поток, зная среднее значение световой отдачи.
Практичную светоотдачу имеют светодиодные лампы (потери менее 5%).
Важно! Существуют стандарты качества освещения для помещений, а также для растений или для животных. Освещенность характеризуется отношением светового потока к площади поверхности
Единицы измерения освещения
Видео:Расчет освещенности вручнуюСкачать
Как перевести люксы в люмены
Однако, если известно нужное значение освещенности в люксах и площадь освещаемой поверхности, можно подсчитать требуемую величину светового потока в люменах. При этом следует понимать, что подсчет будет выполнен со многими допущениями, так как приблизить условия его выполнения к физически идеальным не представляется возможным. При подсчете следует принять, что:
- источник света располагается в центре;
- освещенность равномерна на всей площади, что практически невозможно;
- на всю площадь поверхности свет падает под одинаковым углом;
- поверхность освещается изнутри мысленной сферы, предполагаемой вокруг источника.
Для того, чтобы получить значение в люменах, нужно норму в люксах умножить на значение площади, нуждающейся в освещении.
Площадь пола и потолка составит: 10 х 10 = 100 м². Площадь каждой стены: 4 х 10 = 40 м². Теоретически с допущением на равномерное освещение и расположение источника, равноудаленного от всех точек поверхности, задача решается так: 300 лк х (4 х 40 + 100 + 100) м² = 300 х 360 = 108 000 лм. Если это астрономическое значение «перевести» в обычные 100-ваттные лампы накаливания, то потребуется всего лишь… 72 штуки.
Практический подход будет другим. Совершенно не нужно освещать потолок — рабочие места сотрудников находятся внизу. Более того, конструкция многих потолочных светильников делает невозможным распространение света вверх. Значит из вычислений нужно убрать площадь потолка:
300 лк х 260 м² = 78 000 лм.
Современные потолочные светильники со светодиодами могут выдавать 5000 люменов. Соответственно их потребуется 16 штук (78 000/5000) с округлением до целого числа.
Это количество можно снизить. Согласно СанПиН 2.2.1/2.1.1.1278-03 замер освещенности производится над рабочей поверхностью, а также в контрольных точках, удаленных от стен и световых проемов на 1 м. Достаточно разместить осветительные приборы над рабочими местами сотрудников. Математически уменьшив геометрические характеристики пола на 1 м с каждой стороны, получим:
300 лк х (160 + 64)м² = 300 х 224 = 67200 лм. Что в потолочных светильниках составит: 14 штук с округлением до целого числа.
Watch this video on YouTube
Видео:Физика 11 класс (Урок№16 - Интерференция света.)Скачать
Нормы и порядок расчета
Требования к освещенности зависят от назначения конкретного помещения и вида деятельности человека. Стандарты, по которым измеряется показатель, установлены в ГОСТ Р 54944-2012, нормы – в СНиП. Все параметры относятся не только к полу, но и к плоскостям столов. Доступны таблицы, по которым можно определить люксы для любого объекта.
При разработке системы освещения для жилого дома (квартиры) можно воспользоваться данными из этой таблицы:
Норма согласно СНиП (лк) | Помещение |
20 | Проходы на чердаки, подвалы |
20 | Электрощитовые, котельные, вентиляционные камеры |
20 | Лестницы |
50 | Ванные. душевые, санузлы |
50 | Коридоры и холлы в домах (квартирах) |
75 | Гардеробные комнаты |
100 | Сауны, раздевалки, бассейны |
150 | Жилые комнаты и кухни |
150 | Тренажерные залы |
200 | Детские комнаты |
300 | Библиотеки, кабинеты |
Расчет осуществлятеся из 2-х этапов:
- определения требуемого уровня свечения;
- определения количества лампочек.
Формула для расчета свечения:
Н – норма (согласно таблице);
П – площадь помещения;
К – коэффициент, зависящий от высоты потолков (1 для 2,5-2,7 м, 1,2 для 2,7-3 м, 1,5 для 3-3,5 м, 2 для 3,5-4,4 м).
Чтобы рассчитать количество ламп, полученный результат нужно разделить на люмены, указанные в их технической документации выбранных для монтажа лампочек.
Если проводятся работы по капитальному ремонту или реконструкции, расчетами занимаются сотрудники подрядчика.
Они учитывают особенности конструкции и материалов светильников, световое отражение от стен, полов, потолков, предметов интерьера в зависимости от характеристик облицовочного материала. Вид светильников предварительно обозначаются в проектной документации и техническом задании.
При подсчетах используется формула:
Е – норма для горизонтально расположенных плоскостей;
к – коэффициент, рассчитанный с учетом отклонений в работе системы при перегорании отдельных источников света и перемещении предметов интерьера;
S – площадь помещения;
к1 – коэффициент неравномерности;
Ф – световой поток от одной лампочки (зависит от мощности и типа);
к2 – коэффициент в долях.
При самостоятельном проведении измерений и подсчетов следует учесть, что отраженный свет по мощности может мало отличаться от прямого.
Видео:Свет и освещенность. Простейший источник света [Компьютерная графика]Скачать
Расчет светового потока
Для того чтобы понять требуемый параметр светового потока и сделать расчет количества светодиодных светильников в помещении, необходимо нормативный показатель санпина перемножить на площадь комнаты и коэффициент с учетом высоты потолка (для потолка 2,7 метров это 1, а для 3 — 1,2). В итоге получается, что для освещения кухни и спальни необходимо 150 люксов, кабинета — 350 люксов, а санузла и прихожей — 50 люксов.
Далее при расчете следует опираться на мощность источников света, выраженную в люменах. Полученное значение по формуле следует поделить на мощность ламп и получится их количество.
Обратите внимание! Чтобы правильно рассчитать мощность светового потока, необходимо воспользоваться формулой соотношения удельной мощности на площадь комнаты, поделенного на число ламп. Как подсчитать светопоток по формуле
Как подсчитать светопоток по формуле
Видео:Дисперсия света. Интерференция света | Физика 11 класс #30 | ИнфоурокСкачать
Чем измеряют степень освещенности
Как мы уже выяснили, единица измерения освещенности — Люкс. Несложно догадаться, как называется прибор, которым измеряют уровень света. «Люкс» плюс «метр» (с древнегреческого переводится как «мера», «измеритель») равно люксметр. Принцип работы этого портативного устройства схож с работой фотометра.
Попадающий на элемент световой поток выпускает электроны в теле полупроводника, из-за чего электроток начинает проводиться фотоэлементом. Величина электрического тока прямо пропорциональна степени освещения фотоэлемента, который и отображается на шкале или на электронном дисплее, если это современная модель люксметра. Аналоговые аппараты снабжены специальной шкалой с градусами. По движению стрелки определяются окончательные результаты замеров.
Цифровые устройства.
На смену аналоговым люксметрам пришли цифровые — маленькие компьютеры. Параметры можно увидеть на небольшом жидкокристаллическом экране. Часть, с помощью которой измеряют свет, часто содержится во внешнем корпусе и соединяется с основным устройством гибким проводом. Из-за такой конструкции можно измерять освещение в любых местах, даже труднодоступных. Согласно ГОСТ, погрешность аппарата не должна превышать 10 процентов.
Важные моменты.
При расчете сравнительной световой интенсивности можете сделать замер интенсивности освещения аналоговым или цифровым устройством. Современные измерители отображают параметры в люксах, а устаревшие аналоговые — те, которые со стрелочкой, — в фут-канделах. 1 фут-кандела равняется 10.76 люкс.
Видео:CLASS 1-02-L1 | ОСНОВЫ РАБОТЫ СО СВЕТОМСкачать
Измерение светового потока
Перед тем как выпустить продукцию на рынок, производитель делает в лабораторных условиях определение и измерение характеристик осветительного прибора. В домашних условиях, не имея специальных приборов, это сделать нереально. Но проверить цифры, указанные производителем, можно с помощью вышеприведенных формул, воспользовавшись компактным люксметром.
Сложность точного измерения параметров света заключается в том, что он исходит во всех возможных направлениях распространения. Поэтому лаборатории используют сферы с внутренней поверхностью, которая имеет высокий коэффициент отражения – сферические фотометры; применяют их и для измерения динамического диапазона фотоаппаратов, т.е. светочувствительности их матриц.
В быту больше смысла имеет измерять такие важные параметры света, как освещенность помещений и коэффициент пульсации. Высокий коэффициент пульсации и тусклое освещение заставляют людей чрезмерно напрягать глаза, что быстрее вызывает усталость.
Коэффициент пульсации потока света – это показатель, характеризующий степень его неравномерности. Допустимые уровни этих коэффициентов регулируются СанПиН.
Не всегда можно заметить невооруженным глазом, что лампочка мерцает. Тем не менее даже незначительное превышение коэффициента пульсации влияет на центральную нервную систему человека негативно, а также уменьшает работоспособность. Свет, который может неравномерно пульсировать, излучают все экраны: мониторы компьютеров и ноутбуков, дисплеи планшетов и мобильных телефонов, экран телевизора. Пульсацию измеряют люксметром-пульсметром.
Видео:Компьютерная графика. Лекция 9Скачать
Норма освещенности жилого помещения
Освещенность помещений разного назначения неодинакова и может различаться на порядок. Количество люмен на квадратный метр по типам жилых помещений таково:
- кабинет, библиотека, мастерская — 300;
- детская комната — 200;
- кухня, спальня — 150;
- баня, сауна, бассейн — 100;
- гардероб, коридор — 75;
- холл, коридор, ванная, санузел — 50;
- лестница, подвал, чердак — 20.
Расчет освещенности для помещений
Для определения освещенности помещения необходимо знать следующие параметры:
- Е — нормативное значение освещенности (сколько люменов нужно на 1 м²).
- S — площадь помещения.
- k — коэффициент высоты:
- k = 1 при высоте потолка 2.5 — 2.7 м;
- k = 1.2 при высоте потолка 2.7 — 3.0 м;
- k = 1.5 при высоте потолка 3.0 — 3.5 м;
- k = 2 при высоте потолка 3.5 — 4.5 м;
Формула для расчета простая:
Зная освещенность, можно подобрать требуемый световой поток и мощность осветительных ламп с учетом их различий по технологиям производства и принципу работы. Следует учитывать особенность зрения человека, для которого источники света с синеватым оттенком (начиная с цветовой температуры 4700К и выше) кажутся менее яркими.
Watch this video on YouTube
Видео:Свет как физическое явление. Лекция Александра ДмитриеваСкачать
Диапазон измерения освещенности
Специальный прибор для измерения освещенности, люксметр, выбирают с учетом предполагаемой рабочей области. Нет смысла в избыточной трате энергетических ресурсов без действительной необходимости. Профессиональные расчеты выполняют с учетом особенностей отдельных операций: от общего наблюдения до действий с мелкими деталями высшей точности.
Нормативная освещенность объектов
Объект | Нормативная освещенность в люксах (лк) |
---|---|
Кухня | 150 |
Детская комната | 200 |
Гостиная, столовая | 150 |
Входная группа, коридоры между комнатами | 50 |
Библиотека, кабинет | 300 |
Межэтажные лестничные пролеты | 20 |
Площадка перед лифтом | 30 |
Тепловой пункт | 20 |
Фойе, приемные | 150 |
Проектные организации | 500 |
Ремонтные и сервисные мастерские | 300 |
Серверная комната, операционный зал в банке | 400 |
Помещение для сейфа | 150 |
Аудитории высших учебных заведений | 400 |
Спортивные залы | 200 |
Бильярдные комнаты | 300 |
Бассейн | 150 |
Торговый зал в магазине | 500 |
Склад в прачечной | 50 |
Муниципальная автомобильная дорога с проходимостью 500-1000 транспортных средств за час | 15 |
Центральные аллеи на выставках | 10 |
Существенное значение имеет чувствительность человеческого глаза к определенным участкам спектра. Современные приборы для измерения света создают с учетом соответствующих особенностей. Обычно проверяют видимый диапазон. Однако надо помнить о том, что незаметное ультрафиолетовое излучение при большой интенсивности оказывает негативное влияние на сетчатку.
Также проверяют пульсации с частотой до 300 Гц. Они заметны для человеческого зрения. Подобные изменения амплитуды излучения вызывают дискомфорт, вплоть до болезненных ощущений. Необходимо помнить о вреде избыточной освещенности. В подобных условиях значительно возрастают общие нагрузки, так как активизируются обменные процессы в организме.
Интересно. Отдельно следует упомянуть уход за растениями. Освещенность для роз и пальм устанавливают выше 14 000-16 000 люкс. Неприхотливым фикусам достаточно 8 000-11 000 люкс.
Контроль освещения позволяет при разумных затратах энергии получать хорошие показатели урожайности в круглогодичном режиме
Видео:Модель световодаСкачать
Освещение, необходимое на 1 м2
Мощность освещения является важным показателем, который измеряется в люксах и люменах, являющихся подъединицей люксов. Без правильно подобранного освещения невозможен комфортный отдых и нахождение в любой комнате. Для разного рода комнат необходимы свои вычисления. Их можно произвести, учитывая количество светоисточников и санитарные нормы для одного квадратного метра.
Единица измерения
Отвечая на вопрос, сколько единиц требуется для освещения одного квадратного метра и как рассчитать освещенность помещения светодиодными лампами, следует понимать предназначение конкретной комнаты. К примеру, для спальни требуется 100 люменов на один квадратный метр, а для санузла 150.
Как правило, все технические нормы освещенности даны в нормативных документах в люксах. При необходимости их можно перевести в люмены.
Сколько нужно люменов для одного квадратного метра
Видео:Дифракция света ● 1Скачать
Ошибки при расчете
При расчете освещения важно понимать, что с изменением цвета настенных и напольных покрытий, сменой подвесного или натяжного потолка с его отражающей способностью меняется светопоток. Важно знать коэффициент отражения каждого цвета
Так белые поверхности способны отражать до 70% света, серые 30%, а черные — 0%. Также стоит отметить, что многие ошибаются с цветом лампочек, поскольку цвет самих светоисточников влияет на их пропускную способность и мощность.
Часто используются при расчетах советские стандарты и снипы, но нужно понимать, что они разрабатывались в то время, когда еще не были изобретены современные светоисточники. Особой заботы о том, в каком помещении нужно находиться человеку, тоже не было.
Обратите внимание! Ошибка нередко при расчете освещения возникает при сочетании разных световых источников, цвета и общей фактуры. Часто чрезмерное количество осветительного оборудования приводит к профициту освещения
Это так же плохо, как и дефицит, для глаз и общего самочувствия людей, которые будут находиться в этом помещении.
Зависимость освещенности от цвета ламп
Освещенностью называется величина, которая равняется светопотоку участка освещаемой поверхности. Измеряется в люксах, который равен одному люмену на квадратный метр. Понять, сколько нужно люменов на квадратный метр, можно, исходя из расстояния, длины и ширины помещения, а также мощности осветительных устройств.
Важно понимать, что сегодня существуют определенные санитарные нормы освещенности. Их нужно неукоснительно исполнять, чтобы было достигнуто хорошее самочувствие находящихся в помещении людей
Чтобы правильно подсчитать необходимое количество светоисточников и люменов, можно воспользоваться представленной выше формулой или онлайн-калькулятором.
Видео:Световые явления. Источники света. Распространение света | Физика 8 класс #26 | ИнфоурокСкачать
Люмен и ватт
Энергосберегающие лампы при той же светоотдаче потребляют в 5-6 раз меньше электрической энергии, чем лампы накаливания. Светодиодные – в 10-12 раз меньше. Мощность светового потока уже не зависит от количества ватт. Но производители всегда указывают ватты, так как использование слишком мощных лампочек в не предназначенных для такой нагрузки патронах приводит к порче электроприборов или короткому замыканию.
Если расположить самые распространенные виды лампочек в порядке возрастания светоотдачи, можно получить такой список:
- Лампа накаливания – 10 люмен/ватт.
- Галогенная – 20 люмен/ватт.
- Ртутная – 60 люмен/ватт.
- Энергосберегающая – 65 люмен/ватт.
- Компактная люминесцентная лампа – 80 люмен/ватт.
- Металлогалогенная – 90 люмен/ватт.
- Светодиодная (LED) – 120 люмен/ватт.
Но большинство людей привыкли при покупке лампочек смотреть на количество ватт, указанное производителем. Чтобы подсчитать, сколько нужно ватт на квадратный метр, сначала стоит определиться, насколько ярким должен быть свет в помещении. 20 ватт лампы накаливания на 1 м² – такое освещение подойдет для рабочего места или гостиной; для спальни будет достаточно 10-12 ватт на 1 м². При покупке энергосберегающих ламп эти цифры делят на 5
Важно учесть и высоту потолка: если он выше 3 м, общее количество ватт следует умножить на 1,5
Видео:Урок 381. Принцип Гюйгенса. Вывод законов отражения и преломления волнСкачать
Как измерить яркость освещения
Измерить яркость можно с помощью специализированного прибора. В качественном яркометре устанавливают:
- объектив с высокой светосилой;
- чувствительную матрицу;
- микропроцессорный блок обработки/ вывода информации.
Если хорошо настроить такой прибор, он сможет измерять силу света на большом расстоянии от источника (отражающей поверхности).
Люксометр
Приборы этой категории создают со встроенным или выносным датчиком. Простейшие стрелочные приборы стоят недорого. Однако пользоваться ими неудобно в труднодоступных местах и при высоком уровне вибраций. Повышенную точность обеспечивают цифровые модели. Фоточувствительный датчик устанавливают на поверхности. После обработки результат измерений отображается на дисплее и записывается в памяти.
Измерение люксометром
Видео:ВГиАКГ (ФИТ з/о): реализация модели освещенияСкачать
Нормы освещения для разных помещений
Необходимо обеспечивать нормальную освещенность помещений для поддержания здоровья человека, которая регламентируется стандартами.
Нормативы искусственного освещения с люминесцентными лампами приведены ниже.
Допустимые параметры Помещения | Освещенность, люкс | Коэффициент пульсаций, % Максимальный |
Кухня в жилом объекте недвижимости | 150 | 25 |
Торговый зал в универсальном магазине | 400 | 10 |
Аудитория в учебном заведении | 400 | 10 |
Операционная комната в больнице | 500 | 10 |
Важно! Для районов севера, полярных станций существуют свои нормы и стандарты. Так, выпускаются специальные «лампы полного спектра», которые частично компенсируют отсутствие на солнце допустимым количеством УФ
Принятые расшифровки при определении интенсивности освещённости:
- СИ – Система единиц физических величин;
- ИК – Инфракрасное излучение;
- УФ – Ультрафиолетовое излучение;
- нм – нанометр (1/10*9 м);
- ТГц – Терагерц (1х10*12 Гц).
Изучив природу света, от свечи до лазера, используя электричество, ученые управляют разнообразной работой излучений. Но людям свойственно излучать свою энергию и эмоции, мысли и чувства, добро и радость. Хорошо сказал французский ученый Паскаль: «Существует достаточно света для тех, кто хочет видеть, и достаточно мрака для тех, кто не хочет.
Видео:Светец. Универсальная технология освещения. Энергетика прошлогоСкачать
Сила света
Логичнее было бы назвать единицу силы света угловым световым потоком.Luminous intensity — candela (lm/sr), cd — кандела, Кд, «свеча», люмены деленные на стерадиан.Силу света также называют candlepower.Интересно, что в древности 60-ваттную лампочку часто называли 60-свечёвой, но света она давала вовсе не 60 Кд.
Если с одной стороны спирали лампочки поставить рефлектор, поделив сферу пополам, то сила света увеличится в 2 раза. Например, бытовая матовая криптоновая лампа накаливания под брэндом General Electric 75W 230V даёт световой поток 865 люмен. Вогнутое зеркало, делящее сферу пополам, увеличит силу света в 2 раза. Зеркало в форме параболоида вокруг лампочки увеличит силу света до бесконечности, что конечно же, из-за не бесконечно малых размеров невозможно.
Зато возможно в фокусе оптической системы источник света-зеркало увеличить до бесконечности яркость. На практике полную бесконечность получить невозможно, а вот расплавить золото — можно.
Пример выражения яркости (лм) через силу света (Кд)
Дано:светодиод (источник света)силой света (lum. intensity) 110 мКд (mcd)в угле (viewing angle) 130°.———————————Найти: «суммарную силу света» (как бы по всем направлениям), правильно — cветовой поток в люменах от данного источника света.
Обратите внимание: дано плоское сечение объемного конуса (viewing angle) в ПЛОСКИХ ГРАДУСАХ. Можно пойти по упрощенному пути: «перевести» плоские градусы (в этом толковании) в «правильные» объемные стерадианы через соотношение (1).130° («плоских градусов») ≈ 2 sr («объемных стерадианов»)
Можно пойти по упрощенному пути: «перевести» плоские градусы (в этом толковании) в «правильные» объемные стерадианы через соотношение (1).130° («плоских градусов») ≈ 2 sr («объемных стерадианов»)
А люмены (световой поток) — это cd⋅sr,подставляя величины:110 мКд × 2 ср = 220 мЛм = 0,22 Лм.
Неярко, однако! (Ср. лампочками со спиралью накаливания.)Но нужно проверить цену светодиода! Может оказаться дешевле, чем один мощный светодиод. (А может быть, и нет.)
Видео:Пожалуй, главное заблуждение об электричестве [Veritasium]Скачать
Приборы для измерения уровня освещенности
Прибор, которым измеряются показатели освещенности, называется люксметром. Он может быть аналоговый или цифровой.
Световой поток падает на фотоэлемент, освобождая электроны, что вызывает проводимость тока. Его величина, которая отражается на шкале (градуированной в люксах), пропорциональна уровню освещенности фотоэлемента. Если люксметр аналоговый, результат виден по отклонению стрелки.
В цифровых люксметрах результат виден на ж/к дисплее. У большинства из них часть, которая измеряет показатель, отдельная, с дисплеем связана при помощи провода, пределы измерений регулируемые. Такая конструкция дает возможность измерить освещенность в местах, недоступных для аналогово люксметра.
Фотографы используют более точное оборудование:
- экспонометры (измеряют освещенность экспозиции);
- флешметры (применяются вместе с фотовспышками);
- фотометры (сочетает в себе характеристики флешметра и экспонометра).
При выборе лампочек для светильников не стоит ориентироваться на один показатель. У светового потока множество характеристик, в последнее время одной из самых важных считается коэффициент пульсации.
Существуют приборы, позволяющие одновременно измерить освещенность, яркость и пульсацию. Они называются люксметром-пульсометром-яркомером. Свет улавливает фотоэлемент, результат виден на дисплее. Для определения коэффициента пульсации данные обрабатываются специальной программой, установленной на компьютер.
Видео:Krylov 2019 Optics 28Скачать
Понятие освещенности
Освещенностью называется показатель, который измеряется как соотношение величины потока света к единице площади, на которую перпендикулярно он падает.
При расчетах необходимо учесть, что освещенность:
- прямо пропорциональна силе светового потока;
- обратно пропорциональна квадрату расстояния от источника до освещаемой площади;
- прямо пропорциональна косинусу угла, под которым световой поток падает.
Освещение может быть:
- естественное – проникает в помещения через проемы несущих конструкций;
- искусственное – создается осветительными приборами;
- совмещенное – естественное, дополненное искусственным.
В помещении можно устроить общую (чаще всего потолочную), местную (подающую свет на отдельные зоны), комбинированную (общую, дополненную местным) систему освещения.
Расчет количества светодиодных ламп для помещения
Согласно предыдущей информации узнать количество светодиодных ламп можно, подсчитав светопоток и поделив его на мощность ламп. К примеру, для кухни с площадью 20 квадратных метров и высотой потолков в 3 метра, где планируется поставить светодиодные люстры или подсветку в 900 люменов, необходимо 4 осветительных прибора по технологии подсчета.
В примере расчета стоит указать, что вычисления производились следующим образом: (150 люксов нормы освещения для кухни * 20 квадратных метров * 1,2 коэффициент потолка) / 900 люменов. Также вычислять необходимое число светоисточников можно по специальным онлайн-калькуляторам в сети.
Необходимое количество светодиодных ламп для помещения
Как правильно измерять освещенность в разных помещениях
Вне зависимости от типа помещения, произведение замеров должно выполняться только специальными приборами. Оценить характеристику можно и без люксметра (фотоаппаратом или телефоном), но качественные замеры возможны лишь с применением специального оборудования. Перед непосредственным началом замера, требуется заменить все вышедшие из строя осветительные приборы и лампы, чтобы их параметр соответствовал заводскому стандарту. Это характерно для замеров в производственных помещениях и на рабочих местах при соблюдении условий ООТ.
Наиболее часто измерения производят люксметром, помогающим оценить качество света и общие условия труда и быта, либо в дальнейшем создать такие параметры. Процесс замера заключается в следующем:
- Прибор помещается в горизонтальное положение, направляется в точку измерения (устанавливается на стол в непосредственно близости от измеряемого источника света);
- К источнику света, если это возможно, направляется фотографический датчик;
- В случае, если индикатор прибора показывает. Что измерение возможно, то его тумблер переключается в соответствующий режим;
- Зафиксированный на дисплее результат анализируется путём сравнения с нормативными показателями.
Важно! Прибор фиксирует количество света и его лучей, которые попадают на его светочувствительный элемент и, соответственно, на рабочий стол или другую поверхность. Если нужно узнать данные от какого-то обособленного осветительного прибора, то все остальные источники должны быть выключенными
Организация освещения в жилых помещениях
С помощью осветительных приборов можно равномерно подсветить всю комнату и разделить ее на отдельные зоны (рабочий стол, кресло для отдыха, зеркало и т. д.). Раньше считалось, что для того, чтобы организовать качественное освещение, нужно знать только количество Ватт на квадратный метр, однако это мнение устаревшее. Чтобы провести правильные расчеты, необходимо определить сколько Лк и Лм нужно на 1м². Учитывая эти важные параметры, вы сможете определиться с количеством лампочек и светильников.
При организации освещения нужно учитывать особенности отдельных жилых помещений:
- В прихожей искусственное освещение необходимо, так как здесь обычно нет окон. Для подсветки можно использовать светильники, которые излучают направленный пучок света с широким углом рассеивания.
- Гостиная – это наиболее функциональная комната, которая может совмещать зону отдыха, работы, занятий спортом, приема пищи и т. д. Здесь применяется многоуровневая подсветка с применением разных типов приборов: потолочные, настенные, настольные, напольные. Они помогут равномерно осветить помещение и выделить отельные функциональные участки. Для акцентирования внимания на особенностях интерьера применяют светящиеся ленты.
- Кухня имеет 2 основных «светящихся» центра – обеденный стол и рабочая поверхность. Потолочный светильник поможет осветить место для приема пищи, а точечные устройства или диодные ленты применяют для подсветки разделочного стола.
- Спальня – это место для отдыха и расслабления, поэтому свет в ней должен быть мягким и теплым. За фоновую подсветку выступает небольшая люстра или точечные приборы. Дополнить ее можно светильниками возле кровати или туалетного столика.
В санузлах можно сочетать светильники фонового и местного освещения. Основной прибор устанавливают на потолке или стене, а дополнительные – возле зеркала, умывальника и т. д. Для ванной стоит покупать устройства с высоким уровнем влагозащищенности.
Раньше для освещения квартир чаще применяли лампы с нитью накала, но сейчас они уступают более современным галогенным и люминесцентным устройствам. Однако лидером среди всех источников света являются светодиодные лампочки. Они наиболее долговечные, экономичные, прочные, безопасные, имеют широкий спектральный диапазон и сейчас стоят дешевле, чем раньше.
При выборе светодиодных лампочек отдавайте предпочтение проверенным маркам, так как на рынке появилось много подделок.
Фотометрия
В.А. Емельянов, Автодорожный лицей им. А.А.Николаева, г. Москва
Тела, излучающие свет, называются источниками света. Раздел оптики, изучающий методы и приемы измерения действия видимого света на глаз человека, называется фотометрией.
Световой поток – величина, равная световой энергии (оцениваемой по зрительному ощущению), проходящей через заданную поверхность за единицу времени: <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
001.gif» />где W – количество световой энергии, проходящей через заданную поверхность за время t. Единицей светового потока в СИ является люмен (лм).
<img src="http://ic3.static.km.ru/img/45566
Часть пространства, ограниченная конической поверхностью, называется телесным углом. Этот угол называется центральным телесным углом (рис. 1), если его вершина совмещена с центром сферы.
Телесный угол измеряется отношением <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
003.gif» />, где S – площадь части поверхности сферы радиусом R, на которую опирается данный угол. Единицей измерения телесного угла служит стерадиан (ср). Полный пространственный угол равен <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
Величина, измеряемая световым потоком, приходящимся на единицу телесного угла по заданному направлению, называется силой света источника <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
005.gif» />где Ф – световой поток внутри достаточно малого телесного угла w. Сила света в СИ измеряется в канделах (кд).
Точечным источником света называется источник, размеры которого малы по сравнению с расстоянием до места наблюдения и который излучает свет равномерно во всех направлениях.
Полный световой поток от точечного источника света равен <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
Освещенностью поверхности называется величина, равная световому потоку, падающему на единицу площади равномерно освещаемой поверхности.
В СИ освещенность измеряется в люксах (лк).
Первый закон освещенности: освещенность поверхности точечным источником прямо пропорциональна силе света источника и обратно пропорциональна квадрату расстояния от источника до освещаемой поверхности:
<img src="http://ic3.static.km.ru/img/45566
Второй закон освещенности: освещенность поверхности прямо пропорциональна косинусу угла падения лучей:
<img src="http://ic3.static.km.ru/img/45566
Объединенный закон освещенности: освещенность, создаваемая точечным источником света на некоторой площадке, прямо пропорциональна силе света источника и косинусу угла падения лучей и обратно пропорциональна квадрату расстояния до площадки от источника:
<img src="http://ic3.static.km.ru/img/45566
Освещенность поверхности, создаваемая несколькими источниками света, равна арифметической сумме освещенностей, создаваемых каждым источником в отдельности.
Если источник света нельзя считать точечным, то для его характеристики вводятся величины светимость и яркость.
Светимость определяется отношением светового потока, испускаемого поверхностью, к площади этой поверхности:
<img src="http://ic3.static.km.ru/img/45566
Единицей измерения светимости в СИ служит люкс. Если светимость тела обусловлена его освещенностью, то M = kE, где k – коэффициент отражения.
Яркостью светящейся поверхности в направлении наблюдения называется величина, равная отношению силы света к площади проекции этой поверхности на плоскость, перпендикулярную к этому направлению:
<img src="http://ic3.static.km.ru/img/45566
где <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
012.gif» />– угол между нормалью к поверхности и направлением наблюдения. Яркость в СИ измеряется в нитах (нт).
Приборы, служащие для определения силы света одного источника на основании сравнения с силой света источника- эталона, называются фотометрами. Фотометры, приспособленные для непосредственного измерения освещенности, называются люксметрами.
Примеры решения задач
Задача 1. Над центром круглого стола диаметром 1,5 м на высоте 1 м подвешен точечный источник силой света 200 кд. Определите световой поток, падающий на горизонтальную поверхность стола, и среднюю освещенность этой поверхности.
<img src="http://ic3.static.km.ru/img/45566
Световой поток, падающий на поверхность стола, определяется по формуле <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
014.gif» />– телесный угол.
Для определения телесного угла соединим точку O
(рис. 2), где находится точечный источник света, с точкой A края стола. Перемещая прямую линию OA вокруг неподвижной точки O, получим прямой конус. Основанием конуса является круг, диаметр которого равен диаметру стола, а высота проходит через центр основания и равна расстоянию от источника света до центра стола. Поместим вершину O полученного конуса в центр сферы радиусом R. Пересекаясь со сферой, боковая поверхность конуса вырезает на ней сегментную поверхность АBD. Площадь сегментной поверхности равна произведению длины окружности большого круга на высоту сегмента, то есть <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
015.gif» />где h – высота сегмента, равная длине отрезка BC.
Известно, что телесный угол при вершине конуса равен отношению площади сегментной поверхности к квадрату радиуса сферы:
<img src="http://ic3.static.km.ru/img/45566
Радиус сферы определяем из прямоугольного треугольника OCD:
<img src="http://ic3.static.km.ru/img/45566
Из рисунка видно, что высота сегмента h = R – H = 0,25 м.
Подставляя найденные значения R и h в формулу
<img src="http://ic3.static.km.ru/img/45566
<img src="http://ic3.static.km.ru/img/45566
Тогда величина светового потока, падающего на поверхность стола, равна:
<img src="http://ic3.static.km.ru/img/45566
Освещенность поверхности стола определяется по формуле
<img src="http://ic3.static.km.ru/img/45566
где <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
024.gif» />– площадь поверхности стола. Подставляя числовые значения, получаем:
<img src="http://ic3.static.km.ru/img/45566
Задача 2. Над серединой стола на высоте 1,2 м висит точечный источник, сила света которого 100 кд. Определите наибольшую и наименьшую освещенность поверхности стола, если его длина 2 м, а ширина 1 м.
<img src="http://ic3.static.km.ru/img/45566
Освещенность, создаваемая точечным источником света, равна <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
027.gif» />Из этой формулы видно, что освещенность максимальна в наиболее близкой к источнику точке стола и минимальна – в наиболее удаленной точке. На рис. 3 такими точками являются соответственно точка O и угловая точка стола, например точка C. По условию задачи SO = H, угол<img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
029.gif» />падения лучей в точку O равен нулю. Следовательно:
<img src="http://ic3.static.km.ru/img/45566
Для определения освещенности в точке C находим расстояние от источника до этой точки и угол падения лучей <img style="float: left; margin: 0 10px 5px 0;" src="http://ic3.static.km.ru/img/45566
<img src="http://ic3.static.km.ru/img/45566
Подставляя числовые значения в формулы для нахождения максимальной и минимальной освещенностей, получаем:
<img src="http://ic3.static.km.ru/img/45566
Задача 3. Точечный источник света S освещает горизонтальную поверхность (рис. 4). Определите, как изменится освещенность в точке A, в которую лучи падают перпендикулярно к поверхности, если сбоку от источника, на таком же расстоянии, поместить плоское зеркало, отражающее свет в эту точку. Коэффициент отражения зеркала считайте равным единице.
<img src="http://ic3.static.km.ru/img/45566
При отсутствии плоского зеркала освещенность в точке A определяется по формуле:
<img src="http://ic3.static.km.ru/img/45566
Если сбоку поместить плоское зеркало, то освещенность в точке A будет равна сумме освещенностей, создаваемых двумя источниками: реальным источником S и мнимым S1, имеющими одинаковую силу света. Следовательно,
<img src="http://ic3.static.km.ru/img/45566
Из построения следует, что треугольник SBS1 равнобедренный, следовательно, SB = S1B = R. Расстояние от мнимого источника света S1 до точки A
<img src="http://ic3.static.km.ru/img/45566
<img src="http://ic3.static.km.ru/img/45566
Задача 4. При фотографировании объекта, помещенного на расстоянии 1 м от электрической лампочки силой света 40 кд, требовалось экспонирование в течение 2 с. Определите продолжительность экспонирования при использовании лампочки силой света 30 кд на расстоянии 1,5 м от объекта. Предполагается, что световая энергия, полученная объектом в обоих случаях, одинакова.
Освещенность объекта равна:
<img src="http://ic3.static.km.ru/img/45566
Так как W1=W2, nj
<img src="http://ic3.static.km.ru/img/45566
Вопросы и задачи
1. Что называется источником света?
2. Назовите естественные и искусственные источники света.
3. Что изучает фотометрия?
4. Что называется световым потоком и какими единицами он измеряется?
5. Что называется телесным углом и какова единица его измерения?
6. Что такое сила света? Дайте определение единицы измерения силы света в СИ.
7. Какой источник света называется точечным?
8. Чему равен полный световой поток точечного источника света?
9. Что называется освещенностью и какова единица ее измерения?
10. В чем сущность первого закона освещенности?
11. Какое влияние на освещенность окажет удвоение расстояния от источника света? утроение? сокращение расстояния вдвое?
12. Как зависит освещенность от угла падения лучей?
13. Почему под действием солнечных лучей снег тает на освещаемых склонах быстрее, чем на горизонтальных участках?
14. Сформулируйте объединенный закон освещенности.
15. Какое отношение имеет смена времен года к законам освещенности?
16. Какими величинами характеризуются протяженные источники света?
17. Что такое светимость? Назовите единицу измерения светимости.
18. Что называется яркостью источника и какова единица ее измерения?
19. Имеются два светящихся шарика разного диаметра, равномерно испускающие свет одинаковой силы во все стороны. Каковы освещенности, создаваемые каждым из этих шариков, на одинаковых расстояниях от их центров? Какой из шариков будет более ярким?
20. Источник света представляет собой равномерно светящуюся сферическую поверхность. Как будет изменяться яркость источника, если приближаться к нему? Удаляться от него?
21. Для какой цели применяется фотометр?
22. Как с помощью фотометра определяют силу света источника?
23. Какими приборами измеряется освещенность?
24. Точечный источник света, находящийся в вершине телесного угла 0,50 ср, излучает в него световой поток 50 лм. Определите силу света источника.
25. Определите телесный угол, внутри которого проходит световой поток 4 лм от точечного источника силой света 50 кд.
26*. Полный световой поток, излучаемый лампой накаливания, равен 6280 лм. Определите силу света этой лампы.
27. Световая отдача электрической лампочки силой света 75 кд составляет 9,42 лм/Вт. Определите мощность лампочки и ее полный световой поток.
28. На хромированную отражающую поверхность падает световой поток 1000 лм. Определите отраженный и поглощенный световые потоки, если коэффициент отражения хрома 0,65.
29. На книгу перпендикулярно ее поверхности, падают солнечные лучи. Световой поток составляет 37 лм. Определите, какой световой поток будет падать на книгу, если ее отклонить на угол 30°.
30. Световой поток 1200 лм падает от каждого из десяти светильников на рабочую площадку 400 м2. Определите освещенность площадки.
31. Определите световой поток, падающий на участок поверхности Земли площадью 100 см2 в ясный солнечный полдень, если освещенность достигает 105 лк.
32. Освещенность поверхности равна 50 лк при падении на нее светового потока 40 лм. Определите площадь освещаемой поверхности.
33. Сила света точечного источника 100 кд. Определите освещенность участка поверхности, расположенного перпендикулярно направлению лучей и находящегося на расстоянии 3 м.
34. Освещенность книги при чтении должна быть 100 лк. Определите необходимую силу света электрической лампочки, если она висит на высоте 50 см над рабочим местом.
35. На каком расстоянии точечный источник света создает освещенность 0,1 лк при перпендикулярном падении лучей, если сила его света равна 40 кд?
36. Поверхность освещалась электрической лампочкой силой света 75 кд. Ее заменили электролампочкой в 25 кд. Определите, во сколько раз нужно уменьшить расстояние от лампочки до поверхности, чтобы освещенность осталась прежней.
37. Над горизонтальной поверхностью стола на высоте 60 см висит электрическая лампочка. Освещенность стола 40 лк. Определите освещенность поверхности, если лампочку поднять на 20 см.
38. Точечный источник света 300 кд отстоит от экрана на расстояние 2 м и создает освещенность 60 лк. Определите угол падения света на экран.
39. Освещенность площадки лучами, падающими под углом 60°, равна 100 лк. Определите освещенность этой же площадки, если ее развернуть перпендикулярно лучам.
40. Определите силу света электрической лампы, если освещенность фасада здания, находящегося на расстоянии 10 м от лампы, равна 2,5 лк при угле падения лучей 60°.
41. Свет от электрической лампы силой 200 кд падает на стол под углом 45° и создает освещенность 141 лк. Определите расстояние от стола до лампы.
42. Освещенность поверхности Земли при угловой высоте Солнца над горизонтом 45° равна 90 000 лк. Определите освещенность при угловой высоте Солнца 15°.
43. На столбе на высоте 3 м от земли висит электрическая лампа силой света 500 кд. Определите освещенность на расстоянии 5 м от лампы.
44. На площадку нормально падает пучок света. Определите угол, на который необходимо отклонить площадку, чтобы ее освещенность уменьшилась вдвое.
45. Спираль электрической лампочки силой света 100 кд заключена в матовую сферическую колбу диаметром 5 см. Определите светимость и яркость лампочки. Потерей света в оболочке колбы пренебречь.
46. В корпусе фонаря сделано окно размером 10 ґ 10 см, закрытое плоским молочным стеклом. Сила света в направлении, составляющем угол 60° с нормалью, равна 10 кд. Определите яркость светящегося окна.
47. Определите яркость источника площадью 1 мм2, который испускает внутри телесного угла в 0,03 ср световой поток 12 лм.
48. С левой стороны от фотометра на расстоянии 15 см находится эталонная лампа силой света 25 кд. Определите силу света испытуемой лампы, расположенной справа на расстоянии 45 см от фотометра, если обе половины фотометра освещены одинаково.
49. Наименьший световой поток, воспринимаемый глазом, равен 10–13 лм. Определите наибольшее расстояние, на кото-ром глаз может зарегистрировать световое излучение точечного источника силой света 25 кд, если площадь зрачка 0,4 см2
50. Электрическая лампочка силой света 200 кд висит над центром круглого стола диаметром 3 м. Определите наибольшую и наименьшую освещенность стола, если расстояние от его центра до лампочки равно 2 м.
51. На мачте высотой 15 м подвешена электрическая лампа, создающая освещенность 1,63 лк на расстоянии 8 м от основания мачты. Определите силу света лампы.
52. Над серединой площадки диаметром 26 м висит электрическая лампа силой света 500 кд. Определите освещенность края площадки, если высота подвеса лампы равна 3, 6, 9, 15 и 25 м. Постройте график изменения освещенности в зависимости от высоты подвеса.
53. Горизонтальная площадка удалена от точечного источника на расстояние 4 м. В точке, в которую лучи падают отвесно, освещенность составляет 25 лк. Определите освещенность площадки в точках, удаленных от нее на 3 м.
54. Над центром круглой площадки висит электрическая лампочка. Освещенность в центре равна 40 лк, на краю 5 лк. Определите угол падения лучей на край площадки.
55. Над центром квадратной плоской площадки на высоте 3 м, вдвое меньшей длины стороны квадрата, установлен точечный источник света. Определите освещенность площадки в точках, удаленных от ее центра на 4 м, если падающий на нее световой поток составляет 628 лм.
56. На высоте 5 м над землей подвешена электролампа силой света 200 кд. Определите площадь круга на земле, внутри которого освещенность не меньше 1 лк.
57. Открытая танцевальная площадка освещается одинаковыми фонарями, установленными на высоте 6 м по углам правильного шестиугольника со стороной 8 м. Сила света каждого 500 кд. Принимая фонари за точечные источники, определите освещенность в центре площадки.
58. Над центром стола висят две электрические лампочки. Нижняя лампочка находится в 4 раза ближе к поверхности стола, чем верхняя, и создает в центре освещенность 32 лк, а верхняя – 3 лк. Определите освещенность в центре стола после перемены лампочек местами. Считайте, что лампочки не загораживают друг друга.
59. По обе стороны от точечного источника света, на расстоянии 1 м от него, помещены параллельные друг другу плоское зеркало и экран. Определите освещенность в центре экрана, если сила света источника 9 кд.
60. Лампа, подвешенная к потолку, имеет в горизонтальном направлении силу света 60 кд. Определите величину светового потока, падающего на вертикально висящую в 4 м от лампы на стене картину площадью 0,5 м2, если на противоположной стене на расстоянии 2 м от лампы находится зеркало.
61. Круглый зал диаметром 20 м освещается электрической лампой, укрепленной в центре потолка. Определите высоту зала, если наименьшая освещенность стены зала в два раза больше наименьшей освещенности пола.
62. На двух вертикальных столбах на высоте 4 м от земли укреплены по одной электрической лампе силой света 200 кд и 500 кд. Определите освещенность на земле под каждой лампой, если расстояние между ними 3 м.
63. На столбах уличного освещения высотой 6 м закреплено по одной электрической лампе силой света 300 кд. Определите расстояние между двумя соседними столбами, при котором освещенность земли в точке, находящейся посередине между ними, составляет не меньше 0,24 лк.
64. Два одинаковых точечных источника света установлены на высоте 6 м от земли и на расстоянии 16 м друг от друга. Определите полный световой поток, создаваемый каждым источником, если освещенность в точке, расположенной на земле посередине между источниками, составляет 7,2 лк.
65. Определите, на какой высоте над листом матовой белой бумаги должна находиться электрическая лампочка силой света 100 кд, чтобы яркость бумаги была равна 1 нт, если ее коэффициент отражения равен 0,8.
66. Яркость Солнца равна 109 нт, диаметр 1,4 млн км. Определите силу света Солнца, наблюдаемую с Земли, и освещенность поверхности Земли, создаваемую нормально падающими солнечными лучами. Расстояние от Земли до Солнца равно 1,5 • 108 км.
67. При печатании фотоснимка негатив освещался в течение 3 с лампочкой силой света 15 кд с расстояния 50 см. Определите время, в течение которого нужно освещать негатив лампочкой силой света 60 кд с расстояния 2 м, чтобы получить отпечаток с такой же степенью почернения, как и в первом случае.
68. Две электрические лампы силой света 100 кд и 400 кд расположены на расстоянии 3 м друг от друга. Где нужно поместить между ними непрозрачный экран, чтобы он был одинаково освещен с обеих сторон?
69. В главном фокусе вогнутого зеркала радиусом кривизны 50 см находится точечный источник света. На расстоянии 25 м от фокуса, перпендикулярно главной оптической оси зеркала, помещен экран. Во сколько раз уменьшится освещенность в центре экрана, если убрать зеркало? Потерями света в воздухе и при отражении пренебречь.
70. На высоте h >> 1 м над поверхностью стола подвешена электрическая лампа силой света 25 кд. Определите освещенность стола непосредственно под лампой, если между ней и столом поместить собирающую линзу оптической силой 1 дптр так, чтобы лампа оказалась в фокусе линзы.
71. Перед сферическим зеркалом радиусом R, в фокусе которого находится точечный источник света S, на высоте h от оптической оси и на расстоянии l от источника помещена небольшая пластинка, плоскость которой перпендикулярна оси зеркала (рис. 5). Определите отношение освещенностей левой и правой сторон пластинки.
<img src="http://ic3.static.km.ru/img/45566
72. Проекционный аппарат имеет объектив с фокусным расстоянием 5 см. Квадратный диапозитив площадью 10 см2 находится на расстоянии 5,1 см от объектива и пропускает световой поток 10 лм. Определите освещенность экрана, на котором получено изображение слайда. Рассеянием светового потока пренебречь.
73. Три точечных источника света расположены в вершинах равностороннего треугольника. В центре треугольника, перпендикулярно его плоскости и параллельно одной из сторон, расположена непрозрачная пластинка (рис. 6).
<img src="http://ic3.static.km.ru/img/45566
Определите освещенность обеих сторон этой пластинки, если сила света каждого из источников I, а длина стороны треугольника l.
74. Над центром стола, на некоторой высоте, установлена лампочка, а над нею, на высоте, в три раза большей, подвешена другая лампочка. Во сколько раз следует уменьшить высоту подвеса нижней лампочки после выключения верхней, чтобы освещенность в центре стола не изменилась, если известно, что при перемене горящих лампочек местами освещенность в центре стола увеличивается в 4 раза? Считать, что лампочки не загораживают друг друга.
13. На склоне та же площадь в единицу времени поглощает большую энергию.
19. Освещенности, создаваемые каждым шариком, на одинаковых расстояниях от их центров одинаковы; маленький шарик более яркий, чем большой.