- Техническая механика
- Сопротивление материалов
- Построение эпюр в сопромате
- Правила построения эпюр
- Определение знака фактора на эпюре
- Особенности построения эпюр поперечных сил и изгибающих моментов
- Примеры построения эпюр
- Эпюра поперечных сил — как построить?
- Подробный способ построения эпюры поперечных сил
- Разбиваем балку на участки
- Метод сечений
- Правила знаков для поперечной силы
- Вводим систему координат для первого участка
- Записываем уравнение равновесия для первого участка и строим эпюру
- Расчет второго участка
- Упрощенный способ построения эпюры
- Первый участок
- Второй участок
- Быстрый способ построения эпюры
- Построение эпюр
- Процесс построения эпюр
- Готовые работы на аналогичную тему
- Определение знака фактора
- Пример построения
- 💥 Видео
Видео:РАСТЯЖЕНИЕ-СЖАТИЕ. Построение эпюр. Сопромат.Скачать
Техническая механика
Сопротивление материалов
Видео:Сопромат. Часть 1. Растяжение (сжатие). Построение эпюр продольных сил и нормальных напряжений.Скачать
Построение эпюр в сопромате
Прикладное значение науки сопротивление материалов заключается в возможности определения основных критериев работоспособности деталей машин и различных конструкций – прочности, деформации и устойчивости.
Применяя метод сечений в сочетании с приемами статики и других разделов прикладной механики, можно определить напряжения, возникающие в том или ином сечении бруса (детали, элемента конструкции), и, исходя из анализа полученного результата, сделать выводы о работоспособности этого бруса при приложении к нему расчетных нагрузок.
Именно напряжение является основным фактором, влияющим на прочностные характеристики элемента конструкции, а также его способность противостоять деформации. По этой причине в сопромате главной задачей, чаще всего, является определение напряжений, возникающих в том или ином сечении детали или элемента конструкции.
Для удобства анализа напряженности отдельных участков и сечений конструкции (бруса) используют графическое изображение нагрузок и напряжений в каждом сечении. Это позволяет визуально анализировать распределение нагрузок и напряжений по всей длине бруса, определять при этом наиболее нагруженные (критические) участки и сечения. Такие графические изображения нагрузок, напряжений, а также деформаций элементов конструкций называют эпюрами.
При анализе степени напряженности и деформирования элемента конструкции (детали, бруса) наиболее часто производят построение следующих типов эпюр:
- эпюры внутренних сил (продольных или поперечных), действующих в сечениях бруса;
- эпюры вращающих (крутящих) моментов;
- эпюры изгибающих моментов;
- эпюры напряжений (нормальных или касательных);
- эпюры перемещений (удлинений, укорочений, прогибов и т. п.).
Иногда на одной эпюре показываются несколько внутренних силовых факторов (эпюра продольных и поперечных сил, эпюра изгибающего и вращающего моментов), но такие эпюры при сложных нагрузках и переменных сечениях бруса сложны для чтения.
Как упоминалось выше, наиболее важную информацию о прочностных характеристиках элемента конструкции (бруса), т. е. способности противостоять разрушению, можно получить, используя эпюры напряжений, а информацию о степени деформации под действием расчетной нагрузки – по эпюрам перемещений.
Эпюры внутренних усилий и моментов в большинстве случаев не дают полной информации о степени напряженности и деформирования отдельных сечений и участков бруса, а являются промежуточным звеном при построении эпюр напряжений и перемещений, особенно если брус имеет ступенчатую форму или переменное поперечное сечение по длине.
Правила построения эпюр
При построении эпюр придерживаются определенных стандартных правил, позволяющих одинаково читать, истолковывать и анализировать эпюру всем участникам процесса конструирования изделия.
Построение эпюры начинают с изображения нулевой линии, которая символизирует линию бруса в ненапряженном состоянии. При этом, если брус имеет сложную пространственную форму, нулевая линия эпюры повторяет контуры центральной (осевой) линии бруса, и имеет такую же пространственную форму.
Нулевую линию эпюры обозначают названием и нулевым символом. Слева от нулевой линии указывается название эпюры (эпюра сил, моментов, напряжений и т. п.), справа от нулевой линии ставится цифра « 0 ». При указании называния эпюры обычно используют символ изображаемой нагрузки, например, внутренние продольные силы чаще всего обозначаются буквой « N », поперечные – буквой « Q », эпюры изгибающих моментов – буквами « Mиз », эпюры вращающих моментов – буквами « Т » или « Mкр », эпюры напряжений – буквами « σ » или « τ » и т. п. Рядом с буквенным названием эпюры (или под ним) указывается единица измерения (ньютон, мегапаскаль, мм и т. п.).
Следующий этап построения эпюры – определение границ силовых участков бруса, т. е. таких участков, где внутренний силовой фактор в сечениях или деформация бруса изменяются по одной закономерности (или остаются постоянными). Как правило, границами силовых участков являются сечения, где приложена внешняя нагрузка или (и) площадь поперечного сечения бруса изменяется. В некоторых случаях, при построении эпюр брусьев сложной объемной формы, границы участков определяют аналитически. Границы силовых участков обозначаются тонкими вертикальными линиями, проведенными от изображения бруса через все эпюры.
Для оптимальной наглядности графика эпюры важно правильно выбрать масштаб изображаемого силового фактора, напряжения или деформации. Если масштаб окажется слишком мелким – эпюра будет трудна для чтения и анализа, если слишком крупным – она займет много места на чертеже.
Если учесть, что для одного бруса выполняют, как правило, несколько эпюр, расположенных одна под другой, то крупный масштаб не позволит выполнить построение эпюр на одном листе.
Для правильного выбора масштаба эпюры предварительно следует просчитать значение отображаемого фактора по всем контрольным сечениям бруса, и после этого определиться с масштабом.
Если, например, в результате расчетов окажется, что вся эпюра займет положительную область (над нулевой линией), то при построении графика эпюры это следует учесть.
Положительные значения фактора откладываются вверх от нулевой линии, отрицательные – вниз. Если на каком-либо участке силовой фактор равен нулю, эпюра совпадает с нулевой линией по всей длине этого участка. После построение внешнего контура эпюры на контрольных сечениях проставляются значения фактора (обычно на внешних углах эпюры), при этом знак фактора (плюс или минус) не указываются.
На положительной области (в самой широкой части) ставится знак «+» в кружке, а на отрицательной области – знак «—» в кружке (см. примеры построения эпюр). Иногда знаки «+» и «—» на эпюре указываются сверху и снизу цифры « 0 » (справа нулевой линии), тогда на площади графика эпюры эти знаки (в кружках) не ставятся.
По окончании построения эпюры по ее площади проводят тонкие вертикальные линии через равные промежутки. Эти линии символизируют сечения бруса. Иногда, в случае построения сложной пространственной эпюры, линии выполняют не вертикально, а в соответствии с проекционным направлением участка на графике эпюры.
Определение знака фактора на эпюре
При построении эпюр внутренних силовых факторов или деформаций необходимо правильно определять знак фактора на данном силовом участке бруса. Для этого следует пользоваться следующими общепринятыми правилами:
- сжимающая продольная нагрузка считается отрицательной, растягивающая – положительной;
- поперечная сила Q , направленная вниз считается отрицательной, вверх – положительной;
- вращающий (крутящий) момент считается положительным, если он вращает «отсеченную» часть бруса против часовой стрелки, отрицательным – по часовой;
- эпюра изгибающих моментов строится в соответствии с «правилом дождя». Это правило используется следующим образом: если в результате деформации от изгибающего момента исследуемое сечение прогнулось вниз, значит, эпюра имеет положительное значение (образовалась «воронка», в которой может задерживаться «дождевая вода»); если же балка прогнулась вверх, то эпюра имеет отрицательное значение («вода» будет скатываться с балки). Более подробно о знаках эпюр поперечных сил и изгибающих моментов здесь.
Особенности построения эпюр поперечных сил и изгибающих моментов
Для облегчения построения эпюр и контроля правильности графика следует запомнить ряд правил, вытекающих из теоремы Журавского:
На участке, где равномерно распределенная нагрузка q отсутствует, эпюра поперечных сил Q представляет собой прямую линию, параллельную нулевой линии (оси бруса), а эпюра изгибающих моментов Mиз – наклонную прямую.
В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть ступенчатый скачок на величину этой силы, а на эпюре Mиз – излом (изменение направления графика).
На участке действия равномерно распределенной нагрузки q эпюра Q представляет собой наклонную прямую, а эпюра Mиз – параболу, обращенную выпуклостью навстречу стрелкам, изображающим направление распределенной нагрузки.
Если эпюра Q на наклонном участке в каком-либо сечении пересекает нулевую линию эпюры, то в этом сечении на эпюре изгибающих моментов Mиз будет иметь экстремальное значение (минимальное или максимальное).
Если на границе действия распределенной нагрузки нет сосредоточенных сил, то наклонный участок эпюры Q соединяется с горизонтальным без «ступеньки», а параболический участок эпюры Mиз соединяется с наклонным участком плавно, без излома.
В сечениях, где к брусу приложены сосредоченные пары сил, на эпюре Mиз будут иметь место ступенчатые скачки на величину действующих внешних моментов, а эпюра Q изменения не претерпевает (приложенные к брусу изгибающие моменты не влияют на эпюру поперечных сил).
Примеры построения эпюр
Материалы раздела «Сопротивление материалов»:
Видео:БАЛКА - 90 СТУДЕНТОВ САМОСТОЯТЕЛЬНО СТРОЯТ ЭПЮРЫ после просмотра этого видео!Скачать
Эпюра поперечных сил — как построить?
Привет! Сегодня будем учиться строить эпюры поперечных сил. В этой статье я расскажу, что такое поперечная сила, чем интересна и полезна при проведении расчетов на прочность и жесткость. По уже сложившейся традиции, как и с другими эпюрами, будем рассматривать три способа построения эпюры поперечных сил: подробный, упрощенный и быстрый. Для того чтобы рассчитать поперечную силу в сечении нужно уметь пользоваться уравнениями равновесия конструкции. Поэтому перед изучением данной статьи, если вы не знаете этого материала, рекомендую изучить его, перейдя по указанной ссылке выше. Ну что же перейдем непосредственно к обучению!
Эпюра поперечных сил — это график показывающий распределение поперечных сил в сечениях, загруженного элемента, работающего на поперечный изгиб.
Видео:расчет однолонжеронного свободнонесущего крыла на прочность. Часть 1. Построение эпюрСкачать
Подробный способ построения эпюры поперечных сил
В качестве примера, возьмем балку, частично загрузим ее распределенной нагрузкой q, а часть оставим без нагрузки, чтобы рассмотреть всевозможные случаи:
Первым делом нужно определить все внешние силы, действующие на конструкцию, то есть помимо распределенной нагрузки на балку будет действовать реакции, возникающие в опорах. Если вы до сих пор не умеете их определять, то обязательно изучите этот материал. В этой статье, я подробно на этом останавливаться не буду. Вот какие значения реакций получаться для рассматриваемого примера:
Разбиваем балку на участки
После подготовительного этапа можно приступать к расчету поперечных сил. На отдельных участках балки поперечная сила будет меняться по определенному закону. Как раз, наша задача научиться определять эти законы. Зная закон изменения поперечной силы на участке, можно определить ее значения в любом сечении в пределах этого участка. Так как, поперечная сила меняется по линейному закону, для построения эпюры достаточно определить ординаты на границах участков. Границами участков служат места приложения сосредоточенных сил, а также начало и конец распределенной нагрузки, то есть для нашего случая нужно рассмотреть два участка.
Важно! Для эпюры изгибающих моментов, границей участков также служит место приложения сосредоточенного момента. На эпюру же поперечных сил моменты не оказывают никакого влияния. Однако, так как эпюры поперечных сил и изгибающих моментов строятся, обычно, вместе, то эту границу так же нужно намечать.
Метод сечений
Приступим непосредственно к расчету. Для установления закона изменения поперечной силы, будем использовать метод сечений. Мысленно рассекаем балку на две части, в пределах 1-го участка, на расстоянии x1 от правого торца балки.
Каждую часть балки уравновешиваем путем приложения сосредоточенной силы Qy1 и момента Mx1. Эти силовые факторы, заменяют действие частей балки друг на друга. Для определения этих величин, достаточно рассмотреть равновесие одной из рассеченных частей.
Правила знаков для поперечной силы
Очень важно на данном этапе выбрать правильное направление поперечной силы. Она должна иметь такое направление, при котором часть балки, при неподвижном (закрепленном) противоположном от рассечения месте, стремилась повернутся ПО часовой стрелке.
Также многие авторы рекомендуют просто запомнить такое правило:
- Для правой отсеченной части, направлять поперечную силу вверх;
- Для левой отсеченной части, направлять поперечную силу вниз.
Вводим систему координат для первого участка
Для удобства выберем правую часть, так как здесь меньше нагрузки, которую нужно учитывать в расчете. Также, мы можем не учитывать момент Mx1, так как в этом уроке, нас интересует только поперечная сила. В рассматриваемом сечении вводим локальную систему координат:
- Ось z будет иметь горизонтальное направление;
- Ось y будет направлена вертикально;
- Ось x будет направлена перпендикулярно плоскости чертежа (на нас).
Записываем уравнение равновесия для первого участка и строим эпюру
Для нахождения поперечной силы на первом участке достаточно записать одно уравнение равновесия – сумму проекций все сил на вертикальную ось y. Эта сумма должна быть равна нулю:
Из полученного уравнения, следует:
Таким образом, поперечная сила в пределах первого участка равна 1 кН. Откладываем это значение на графике:
Положительное значение поперечной силы откладывается выше нулевой линии, отрицательное ниже (как в нашем случае). Эпюры штрихуются перпендикулярно нулевой линии, на каждом участке проставляются знаки, на границах участков указываются численные значения.
Расчет второго участка
Проделываем те же действия, что выполняли для первого участка. Рассекаем балку в пределах рассматриваемого участка на расстоянии z2 от левого торца балки:
Зарисовываем отдельно расчетный элемент, отбросив правую часть и заменив ее действие Qy2 и Mx2. Вводим локальную систему координат:
Для того чтобы рассчитать такой участок, с распределенной нагрузкой, воспользуемся хитростью, которой часто пользуются при решении задач по теоретической механике. Свернем эту нагрузку до сосредоточенной силы. Для этого умножим интенсивность q на длину действия нагрузки – z2.
Записываем уравнение равновесия для второго участка:
Выражаем поперечную силу:
Это закон, по которому меняется поперечная сила на втором участке. Чтобы получить значения для построения эпюры, нужно в это уравнение вместо z2 подставить координаты характерных сечений. Как и говорилось ранее, поперечная сила меняется по линейному закону (исключениями могут быть только схемы с трапециевидной нагрузкой), поэтому для построения эпюры достаточно вычислить значения на границах участка. В сечении A (при z2=0) поперечная сила будет равна:
В середине пролета, при z2=2м получим:
По полученным значениям, строим эпюру поперечных сил на втором участке:
Вот собственно и все! Эпюра поперечных сил построена. Согласитесь, длинное руководство получилось?! Так вот, далее я расскажу, как построить эту эпюру намного быстрее, а в конце покажу как это делается за несколько секунд.Сделайте небольшой перерыв на чай, и возвращайтесь к чтению!
Видео:Математика это не ИсламСкачать
Упрощенный способ построения эпюры
Итак, продолжим изучать технологии построения эпюры поперечных сил. В этом методе будем учиться рассчитывать эту эпюру без вынесения отдельных участков балки и без записи уравнений равновесия. Будем выводить сразу следствия из этих уравнений. Также как, в первом случае, балку нужно разбить на 2 участка.
Первый участок
Запишем закон изменения поперечной силы на первом участке. Для этого отметим сечение С, отстающее от правого торца балки на величину z1. Поперечная сила в этом сечении будет равна сумме проекций всех сил на вертикальную ось, находящихся справа (или слева) от сечения. Мы ведем расчет этого участка справа-налево, так как в данном случае справа нагрузки меньше.
Для того чтобы правильно записать уравнение поперечных сил для любого участка, нужно придерживаться следующих правил:
- Если нагрузка относительно рассматриваемого сечения стремится повернуть ПО часовой стрелки, то в уравнении она учитывается со знаком «+»;
- Если нагрузка относительно рассматриваемого сечения стремится повернуть ПРОТИВ часовой стрелки, то в уравнении она учитывается со знаком «-».
Продемонстрирую вышеописанные правила на нашем примере. Относительно сечения С, сила R B , находящаяся справа от сечения, стремится повернуть против часовой стрелки, поэтому в уравнение она пойдет со знаком «-»:
Как видно из уравнения, поперечная сила, на первом участке, не зависит от координаты z1, поэтому во всех сечениях она одинаковая.
Кстати, помните я писал, что нагрузку можно учитывать, как справа, так и слева? Так вот, давайте запишем уравнение, просуммировав нагрузку, находящуюся слева от сечения С и посмотрим результат.
Реакция RA, относительно сечения С, стремится повернуть ПО часовой стрелке, в уравнение пойдет с плюсом:
Нагрузку q, сворачиваем до сосредоточенной силы, как в подробном способе. Она стремится повернуться ПРОТИВ часовой стрелке, в уравнение пойдет со знаком «минус»:
Подставляя численные значения нагрузки, получим следующий результат:
Теперь перейдем ко второму участку.
Второй участок
Здесь ситуация похожая, подробно комментировать уже не буду, приведу схему и расчет:
По выполненным расчетам двух участков, можно построить уже знакомую эпюру:
Как видите, эпюра поперечных рассчитывается достаточно просто. В последнем разделе я расскажу, как можно построить ее и вовсе устно.
Видео:Построение эпюр при изгибе. Часть 1. Консольная балкаСкачать
Быстрый способ построения эпюры
Как вы уже, наверное, заметили, эпюра поперечных сил имеет скачки в тех местах, где прикладываются сосредоточенные усилия, а в местах где приложена распределенная нагрузка, эпюра постоянно меняется по линейному закону. Эти свойства эпюры можно использовать при построении. Давайте рассмотрим такую балку:
Определим для нее опорные реакции:
Расчет быстрым способом рекомендую производить слева-направо . В этом случае для скачков эпюры будут следующие правила знаков:
- Если приложенная сила направлена вверх , то и скачек на эпюре будет вверх, на величину силы;
- Если приложенная сила направлена вниз , то и скачек на эпюре будет вниз, на величину силы.
С учетом данных правил, получим вот такую эпюру поперечных сил:
Прокомментирую: в точке А, сила направлена вверх, эпюра поднимается на 4 кН, в точке С, опускается до нуля, т.к. приложенная сила направлена вниз и так далее. С сосредоточенным усилиями думаю все просто и понятно.
Там, где есть, распределенная нагрузка, эпюра меняется не скачкообразно, а постепенно. И чтобы узнать насколько эпюра измениться от действия распределенной нагрузки от ее начала и до конца, нужно умножить интенсивность q на длину ее действия:
Вот собственно и все, что хотелось рассказать об эпюрах поперечных сил! Вы можете задавать любые вопросы по материалам статьи в комментариях ниже. Также рекомендую подписаться на наши соц. сети, чтобы не пропустить новые и интересные материалы.
После освоения данного урока, можете смело приступать к изучению техник построения эпюр изгибающих моментов. Данная статья является продолжением серии статей о том, как строятся эпюры для балок, работающих на поперечный изгиб.
Видео:Определение усилий, напряжений и перемещений. СопроматСкачать
Построение эпюр
Вы будете перенаправлены на Автор24
Эпюра — это графическое изображение нагрузок и напряжений по всей длине бруса, используемое для визуального анализа напряженности, а также распределения нагрузок по всей длине бруса.
Эпюру можно построить на основании следующих параметров: внутренних сил (продольных и поперечных), крутящих и изгибающих моментов, напряжений (нормальных и касательных) и перемещений.
Видео:Видеоурок 4. Построение эпюр сил и напряжений.Скачать
Процесс построения эпюр
Процесс построения эпюры стандартизирован и осуществляется по определенным правилам. Это сделано для общего понимания графиков всеми участниками производственного процесса.
Сначала строится нулевая линия. С левой стороны от линии пишется символическое название эпюры: $N$ — продольные силы, $Q$ — поперечные силы, $Mиз$ — изгибающие моменты, $T$ или $Mкр$ — вращающие момент, $σ$ и $τ$ — нормальное и касательное напряжения. Название сопровождается единицей измерения в соответствии с параметром (наименованием эпюры), например, $МПа$ — мегапаскаль.
Затем определяются границы силовых участков, то есть таких участков, где силовой фактор (деформация) остается постоянным или изменяется в рамках одной закономерности. Зачастую, границы силовых участков представляют собой сечения с приложенной внешней нагрузкой. Обозначение границ на эпюре реализуется в виде тонких вертикальных линий.
Если брус обладает сложной объемной формой, то границы определяют аналитически.
Далее эпюра масштабируется. Масштаб выбирается в соответствии с предварительным просчетом отображаемого фактора по всем контрольным сечениям (КС) бруса.
После выбора масштаба и построения внешнего контура эпюры КС присваиваются значения фактора без указания знака (“$+$” и “$–$”). Факторы с положительными значениями чертятся над нулевой линией, а с отрицательными под.
В области с положительными значениями на самом широком участке пишется знак “$+$” и обводится кружком, а с отрицательными выполняется также операция, но указывается знак “$–$”. Можно поставить знаки справа и слева от “$0$”, при этом кружками они обводится не будут.
Готовые работы на аналогичную тему
Видео:4. Построение эпюр в раме ( практический курс по сопромату )Скачать
Определение знака фактора
Знак фактора определяется направлением внутренних силовых факторов и действием деформации. Например, нагрузке продольного типа, направленной на сжатие присваивается знак “$–$”, а на растяжение “$+$”.
Если вращение “отсеченной” части бруса осуществляется против часовой стрелки, то крутящий момент будет со знаком “$+$”, а по часовой стрелке знаком “$–$”. При рассмотрении поперечной силы $Q$, смотрим вертикальную плоскость, если она направлена вниз, то знак “$–$” (вверх “$+$”), а также учитываем поворот балки по часовой “$+$” и против часовой “$–$” .
Видео:Построение эпюр в балке ( Q и M ). СопроматСкачать
Пример построения
Построим эпюры для простой двухоппорной балки с распределенной нагрузкой и действующей силой $F$=$10 кН$ и длиной $8$ $м$.
Начертим расчетную схему и укажем все нагрузки и значения:
Рисунок 1. Расчетная схема двухопорной балки. Автор24 — интернет-биржа студенческих работ
Определим реакции опор ($R$) в данном случае реакция для каждой точки будет равна половине приложенной, силы, так части балки равны по длине (нагрузка распределена).
Рисунок 2. Реакции опор $Ra$ и $Rb$. Автор24 — интернет-биржа студенческих работ
Обозначаем границы участков балки.
Рисунок 3. Границы участков балки. Автор24 — интернет-биржа студенческих работ
На первом участке отметим произвольное сечение и назовем его буквой $D$. Оно расположено на расстоянии $z1$ от левого торца балки. Относительно этого сечения записываем законы, описывающие изменения поперечных сил и изгибающих моментов, в рамках участка.
Рисунок 4. Произвольное сечение D. Автор24 — интернет-биржа студенческих работ
Запишем уравнение для поперечной силы. Поворот реакции $Ra$ выполняется по часовой стрелке, поэтому уравнение имеет вид:
$Qy_1 = Ra = 10 кН$
Обозначим границы, указав значение поперечной силы на графике, и начертим эпюру.
Рисунок 5. Эпюра поперечной силы. Автор24 — интернет-биржа студенческих работ
Запишем уравнение для изгибающего момента. В данном случае момент силы направлен на растяжение, поэтому укажем знак “$+$”, поэтому уравнение имеет вид:
Из уравнения видно, что изменения изгибающего момента будут происходить, в соответствии с линейным законом, и зависеть от координаты $z_1$.
Изображение эпюров со стороны растянутых волокон (показано в примере) характерно для инженерно-строительной практики. В механике эпюра чертится со стороны сжатых волокон.
Рассчитаем эпюру этого участка, подставив в уравнение координаты $z_1 = 0$ (начало участка) и $z_2 = 4$ (конец участка), а затем построим ее.
$Mx_1(z_1 = 0) = Ra • z_1 = 5 • 0 = 0$
$Mx_1 (z_1 = 4) = Ra • z_1 = 5 • 4 = 20$
Рисунок 6. Эпюра изгибающего момента. Автор24 — интернет-биржа студенческих работ
Выполним расчеты для второго участка балки:
$Qy_2 = – Rb = –10 кН$
$Mx_2 (z_2 = 0) = Rb • z_2 = 5 • 0 = 0$
$Mx_2 (z_2 = 4) = Rb • z_2 = 5 • 4 = 20$
Начертим окончательную версию эпюры.
Рисунок 7. Полноценная эпюра рассматриваемой балки. Автор24 — интернет-биржа студенческих работ
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 27 03 2021
Виктория Валерьевна Колесникова
Эксперт по предмету «Сопротивление материалов»
💥 Видео
Построение эпюр поперечных сил и изгибающих моментов в балке.Скачать
2. Построение эпюр в балке ( практический курс по сопромату )Скачать
Расчет значений Q и M для построения эпюр поперечных сил и изгибающих моментов балки на двух опорахСкачать
Основы сопромата. Задача 3. Построение эпюр Q и M для статически определимой балкиСкачать
Сопромат Плоский изгиб (построение эпюр и подбор сечений) Задача №3.22Скачать
КРУЧЕНИЕ ВАЛА. Касательные напряжения. Сопромат.Скачать
Вот для чего нужно строить эпюры в сопромате!Скачать
Расчет многопролетной статически определимой балки. Построение эпюрСкачать