- Стволы свп-4, свп-8. ттх. площадь тушения
- Воздушно-пенные стволы СВП-2, СВП-4 и СВП-8
- Устройство и принцип работы воздушно-пенных стволов
- Основные модели ручных воздушно-пенных стволов
- Ттх пожарных стволов — пожарные ребята
- Воздушные пенные стволы СВП-2, СВП-4, СВП-8
- Пожарный ствол СВП
- Технические характеристики
- Ствол пожарный СВПР, СВП, СПП, СВПЭ-2, СВПЭ-4, СВПЭ-8, СРП-50Е, СРП-50А, РС-А(м), РС-Б(м) — ООО «ФИРМА-КОНТРАГЕНТ»
- Технические характеристики ручных пожарных стволов
- Методика проведения пожарно-тактических расчетов
- Методика и формулы расчета сил и средств для тушения пожара
- Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)
- Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади
- Тушение пожаров в помещениях воздушно-механической пеной по объему
- Пропускная способность рукавов
- Тактико-технические показатели приборов подачи пены
- Линейная скорость выгорания и прогрева углеводородных жидкостей
- Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках
- Основные показатели, характеризующих тактические возможности пожарных подразделений
- Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник
- Примеры решения задач
- Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник
- Примеры решения задач
- Организация бесперебойной подачи воды
- Методика расчета потребного количества пожарных автомобилей для перекачки воды к месту тушения пожара
- Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара
- Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем
- Примеры решения задач с использование гидроэлеваторных систем
- Принцип действия стволов воздушно-пенных СВП-4
- Что такое пожарные стволы
- Зачем нужны и где применяются
- Классификация
- Особенности воздушно-пенных стволов
- Назначение
- Область использования
- Устройство СВП
- Технические характеристики
- Принцип работы
- Техобслуживание
- Стоимость
- Требования и методы испытания пожарных стволов
- Выводы
Видео:Пожарная тактика. Расходы стволов РС-50 и РС-70Скачать
Стволы свп-4, свп-8. ттх. площадь тушения
Видео:Расчет площади ПОЖАРА. Простые формы (Пожарная тактика)Скачать
Воздушно-пенные стволы СВП-2, СВП-4 и СВП-8
Главная → Статьи → Техника и оборудование
Устройство и принцип работы воздушно-пенных стволов
Пена является одним из эффективнейших средств для борьбы с пожаром. Для формирования и подачи направленной пенной струи к месту возгорания используют воздушно-пенные стволы. Различные модификации этих устройств позволяют управлять мощностью и скоростью потока, функционировать в нескольких режимах.
Все воздушно-пенные пожарные стволы имеют схожее устройство. Составными элементами конструкции являются: корпус (длина 50-85 см), соединительная головка, перекрывающий рычаг, рукоятка и насадки. Современные модификации комплектуются клапанами и кранами, позволяющими управлять перемещением и расходом ствола СВП.
Огнетушащий раствор образовывается благодаря смешиванию концентрированного пенообразователя с водой. Для создания воздушно-пенной субстанции (пригодной для тушения пламени) необходимо полученный раствор насытить воздухом. Существуют три способа обогащения кислородом:
- Насыщение огнетушащего раствора на выходе из насадки ствола.
- Смешивание компонентов (пенообразователя, воды и воздуха) осуществляется в пневматической системе пожарной машины;
- Применение метода эжекции. Он заключается в использовании дополнительного ниппеля (вставленного в корпус) со шлангом, по которому поступает пенообразователь.
Воздушно-пенная струя начнет выходить из сопла после того, как рукоятка пожарного ствола будет установлена в заданное положение. С помощью этой же рукоятки происходит регулировка подачи пены.
Основные модели ручных воздушно-пенных стволов
Наиболее распространенными и применяемыми в пожарных частях МЧС являются эжекционные стволы типа СВП и СВПЭ. Они имеют схожую конструкцию, но отличаются способом пенообразования.
Принцип действия СВП следующий: пенообразующая смесь (вода с пенообразователем), поступая сквозь входное отверстие, образует разряжение в вакуумной камере. Благодаря этому воздух всасывается извне через восемь отверстий, находящихся в корпусе ствола. Кислород активно обогащает раствор и производит воздушно-механическую пену.
В корпусе СВПЭ находятся приемная, вакуумная и выпускная камера. К вакуумной подсоединен ниппель со шлангом для всасывания пенообразователя. Поступая в эту камеру, вода образует разряжение, в результате которого туда засасывается пенообразователь. Обогащаясь воздухом через отверстия в корпусе, пенообразующий раствор формирует пену.
На сегодняшний день в России наиболее распространены модели СВП-2, СВП-4, СВП-8. Они различаются между собой по количеству производимой пены в минуту:
- СВП-2: 2 м. куб. пены, при расходе воды 4 л/с
- СВП-4: 4 м. куб. пены, при расходе воды 8 л/с
- СВП-8: 8 м. куб. пены, при расходе воды 16 л/с
Представленное выше пожарное оборудование пользуется большой популярностью в частях МЧС. Изготовленные из алюминиевого сплава воздушно-пенные стволы имеют небольшой вес, при этом они обладают прочной и герметичной конструкцией.
Кроме того, технология производства этих устройств способствует взаимозаменяемости деталей. Это дает пожарным возможность своевременно заменить поврежденный элемент конструкции.
Оборудование универсально; используется как в жарком, так и в холодном климате.
Статью прислал: Brazil
Видео:Расчет площади ТУШЕНИЯ. Простые формы (Пожарная тактика)Скачать
Ттх пожарных стволов — пожарные ребята
Таблица ТТХ и расхода пожарных стволов
При просмотре со смартфона разверните экран для отображения полной таблицы.
Водяные стволы | Расход по воде (л/с) | Дальн струи(м) | Рабоч давл (атм) | Полу- гайка (Ø) | |||||
Ств. «А» (РС, РСП, РСК и т.д.) | 7 | 32 | 4 – 6 | 66 | |||||
Ств. «Б» (РС, РСП, РСК и т.д.) | 2,7 | 30 | 4 – 6 | 51 | |||||
ОРТ — 50 | 2,7 | до 30 | 4 – 8 | 51 | |||||
ОРТ – 50А | 7,4 | до 32 | 4 – 8 | 51 | |||||
КУРС-8 | 2 – 8 | до 35 | 4 – 6 | 51 | |||||
РСКУ-50А | 2 – 8 | до 35 | 4 – 6 | 51 | |||||
Мастер-1 | 0,75 – 4,3 | ? | 5 – 8,5 | 51 | |||||
Ultimatic BGHL | 0,6 – 6,5 | до 35 | 5,3 | 51 | |||||
Ultimatic BGH | 0,6 – 8 | до 37 | 7 | 51 | |||||
Dual Force | 6 – 19 | до 50 | 3 – 7 | 51, 66, 77 | |||||
AKRON Assault 4820 (АКРОН) | 5,55 – 7,9 | ? | 3,1 – 7,1 | 51 | |||||
THUNDERFOG (ТАНДЕРФОГ) | 1,9 – 13,6 | до 55 | 5,3 – 8,6 | 51 | |||||
DELTA H500 MID-RANGE | 0,8 – 8,3 | до 40 | 6 – 7 | 51 | |||||
DELTA DM 600 | 0,8 – 11,7 | до 40 | 5 – 8 | 51 | |||||
DELTA ATTACK 500 | 2 – 8 | до 45 | 5 – 8 | 66 | |||||
DELTA ATTACK 750 | 4,75 – 12,5 | до 45 | 5 – 8 | 77 | |||||
Лафетные стволы | Расход по воде (л/с) | Дальн струи(м) | Рабоч давл (атм) | Полу- гайка (Ø) | |||||
ПЛС — 20 | 19 – 30 | 61 – 68 | 6 | 77 | |||||
CROSSFIRE (КРОССФАЙЕР) | 9 — 80 | до 70 | 7 — 12 | 125 | |||||
AKRON Mercury Quick Attack (3443) | до 32 | ? | ? | 77 | |||||
AKRON Mercury Master 1000™ (1346) | 19 – 63,3 | 60 — 56 | 10 | 77 | |||||
BLITZFIRE (БлицФайер) | 6,5 – 33,5 | до 63 | 7 | 77 | |||||
Пенные стволы (пеногенераторы) | Расх по раств. (л/с) | Расх по воде (л/с) | Расх по пене (л/с) | Кратн.пены | Дальн струи (м) | Раб давл (атм) | Полу- гайка (Ø) | ||
СВП | 6 | 5,64 | 0,36 | 48 | 3 | 8 | 28 | 6 | 66 |
СВП-2 (СВПЭ-2) | 4 | 3,76 | 0,24 | 32 | 2 | 8 | 15 | 6 | 51 |
СВП-4 (СВПЭ-4) | 8 | 7,52 | 0,48 | 64 | 4 | 8 | 18 | 6 | 66 |
СВП-8 (СВПЭ-8) | 16 | 15,04 | 0,96 | 128 | 8 | 8 | 20 | 6 | 77 |
ГПС-200 | 2 | 1,88 | 0,12 | 200 | 12 | 100 | 10 | 6 | 51 |
ГПС-600 | 6 | 5,64 | 0,36 | 600 | 36 | 100 | 10 | 6 | 66 |
ГПС-2000 | 20 | 18,8 | 1,2 | 2000 | 120 | 100 | 14 | 6 | 77 |
УКТП Пурга — 2 | 2 | 1,85 | 0,15 | 140 | 10,5 | 70 | 15-17 | 8 | 51 |
УКТП Пурга — 5 | 5 | 4,64 | 0,36 | 350 | 25,2 | 70 | 20-25 | 8 | 51 |
УКТП Пурга – 7 | 7 | 6,6 | 0,4 | 490 | 28 | 70 | 30 | 8 | 51 |
УКТП Пурга – 10 | 10 | 9,2 | 0,8 | 700 | 56 | 70 | 30 | 8 | 77 |
УКТП Пурга – 20 | 20 | 18,4 | 1,6 | 800 | 64 | 40 | 35 | 8 | 77 |
УКТП Пурга – 30 | 30 | 28,2 | 1,8 | 1200 | 72 | 30 — 40 | 40-50 | 8 | 77 |
Видео:пенное пожаротушениеСкачать
Воздушные пенные стволы СВП-2, СВП-4, СВП-8
Одним из наиболее эффективных средств пожаротушения на сегодняшний день является пена. Для ее формирования и подачи к очагу возгорания применяются специально разработанные для этих целей воздушно-пенные стволы, имеющие короткую аббревиатуру СВП. Абсолютно все стволы обладают схожим устройством и отличаются только скоростью и мощностью создаваемого пенного потока.
СВП состоит из следующих элементов: корпуса в виде алюминиевой полой трубы длиной около 0,5 метра, головки, и рычага с насадкой, а современные образцы дополнительно оборудованы краном и клапаном, для регулировки расхода смеси.
Раствор для тушения огня образуется путем перемешивания воды с пенообразователем, а при насыщении его воздухом создается воздушно-пенная смесь, позволяющая эффективно бороться с пожаром.
Для насыщения тушащего раствора кислородом и получения воздушно-пенной смеси применяют следующие способы:
— насыщение раствора непосредственно на самом выходе из ствола;
— смешивание сразу трех компонентов в пневмоустановке пожарной машины;
— методом эжекции, заключающимся в применении в корпусе ствола специально установленного ниппеля осуществляющем подачу пенообразователя;
Струя образуемой смеси, выходящая из сопла ствола, регулируется рукояткой находящейся на корпусе. С ее помощью также осуществляется включение и отключение подачи тушащего вещества. Наибольшее распространение в пожарных подразделениях МЧС получили стволы эжекционные марки СВП и СВПЭ.
Данное оборудование имеет схожую между собой конструкцию, однако отличаются по применяемому способу пенообразования.
Столь высокую популярность применения в боевых условиях данный тип стволов получил благодаря простоте своей конструкции, возможности получения пены различной кратности, и отсутствию для осуществления подачи воздуха дополнительного оборудования.
Принцип действия ручных пожарных стволов заключается в следующем: поступающая через входное отверстие вода с пенообразователем создает в камере вакуум, и воздух начинает всасываться через восемь специальных технологических отверстий на корпусе. Благодаря этому кислород начинает активно насыщать раствор, в результате чего образуется пена.
Наиболее распространены в нашей стране модели СВП-2, СВП-4 и СВП-8, которые отличаются друг от друга производительностью пены и расходом воды, а цифра в аббревиатуре соответственно означает образование пены в кубических метрах.
Также небольшой вес стволов их прочность, герметичность, ремонтопригодность, а также универсальность, заслуженно снискали уважение в среде спасательных служб. Однако, как и в любой бочке меда есть ложа дегтя, так и у воздушно-пенных стволов есть свои недостатки и самый значимый из них — это стоимость пенообразователя.
Так же пенообразователь необходимо сберегать в особых условиях но, несмотря на недостатки, данный вид противопожарного оборудования пользуется заслуженной популярностью.
Видео:Пенное пожаротушение: Как работает, эффективность тушения пожара, где применяется, плюсы и минусыСкачать
Пожарный ствол СВП
Ствол воздушно-пенный типа СВП
Товар добавлен к заказу!
Всего таких товаров: #
Число товаров в заказе: #
Воздушно-пенные стволы типа СВП (СПП) ДСТУ 2107-92 и СВПЭ-2, 4, 8 ТУ У 14317031.003-95 предназначены для получения воздушно-механической пены из водного раствора пенообразователя, формирования и направления ее струи при тушении пожара.
Под кратностью пены понимается отношение объема пены, полученной на выходе из ствола, к объему исходного раствора. Дальность струи пены указана по крайним каплям.
Технические характеристики
Рабочее давление перед стволом, МПа (кгс/см2) | 0,6 (6) | 0,6 (6) | 0,6 (6) | 0,6 (6) |
Производительность по пене, м3/мин | — | 2 | 4 | 8 |
Расход воды, л/с | — | 4 | 7,9 | 16 |
Расход пенообразователя, л/ск расходу воды, % | 4,8-6,04,8-6 | 4-5 | 4-5 | 4-5 |
Кратность пены на выходе из ствола | 7 | 8 | 8 | 8 |
Дальность воздушно-пенной струи придавлении перед стволом 0,6 МПа, м, не менее | 28 | 15 | 18 | 20 |
Условный проход соединительной головки, мм | 70 | 50 | 70 | 80 |
Масса ствола, кг, не более | 2,8 | 4,0 | ||
Длина, мм | 500 | 574 | 710 | 842 |
Высота, мм | 128 | 100 | 128 | 142 |
Комплектация всасывающими рукавами | нет | есть | есть | есть |
Водопенный пожарный ствол СВП применяется для получения воздушно-механической пены из водного раствора пенообразователя, а также для формирования и направления струи при тушении пожаров.
Пожарный ствол СВП, не оснащенный встроенным эжекторным устройством, входит в комплект пожарных автомобилей, оборудованных стационарными пеносмесителями.
Популярность применения пожарных стволов СВП основана на низкой цене и простом конструктивном устройстве, гарантирующем безотказную работу интенсивно используемого оборудования .
Оставьте свой телефон, мы перезвоним!
Видео:расчеты запаса пенообразователя 1 частьСкачать
Ствол пожарный СВПР, СВП, СПП, СВПЭ-2, СВПЭ-4, СВПЭ-8, СРП-50Е, СРП-50А, РС-А(м), РС-Б(м) — ООО «ФИРМА-КОНТРАГЕНТ»
Стволы ручные устанавливаются на конце рукавных линий пожарного устройства.
Пожарный ствол (устаревшее название брандспо́йт) — металлический наконечник гибкого пожарного рукава.
Стволы пожарные ручные СРП-50А, СРП-50Е разработаны для формирования и направления компактной или распыленной струи воды или раствора пенообразователя и имеют бесступенчатую регулировку угла факела распыла от прямой компактной струи до защитной завесы в 120°.
Стволы могут комплектоваться насадками низкой кратности пены (НКП) и средней кратности пены (СКП).
Основные характеристики стволов пожарных | СРП-50А | СРП-50Е |
Dy соединительной головки, мм | 50 | |
Рабочее давление, МПа, (кгс/см2) | 0,4-0,6 (4-6) | |
Расход воды, л/с, не менее | 6,0 | 2,5 |
Длина струи, м, не менее: прямой компактной распыленной с углом факела распыла 30° 60° 90° 120° (защитная завеса) | ||
Диаметр факела защитной завесы, м, не менее: | 4 | 3 |
Дальность подачи пены, м, не менее с насадком НКП с насадком СКП | ||
Кратность воздушно-механической пены с насадком НКП с насадком СКП | ||
Габариты, мм длина длина с насадком НКП длина с насадком СКП высота |
Стволы пожарные ручные РС-А(м), РС-Б(м) — для формирования и направления прямой компактной или распыленной струи воды или раствора смачивателя.
Предусмотрена бесступенчатая регулировка угла факела распыла от прямой компактной струи до защитной завесы в 120° (путем поворота насадка). По ряду своих возможностей стволы превосходят насадку-распылитель турбинного типа НРТ.
Основные характеристики стволов пожарных | РС-А(м) | РС-Б(м) |
Рабочее давление, МПа, (кгс/см2) | 0,4-0,6 (4-6) | |
Dy соединительной головки, мм | 70 | 50 |
Расход воды, л/с, не менее | 6,0 | 2,5 |
Дальность струи, м, не менее: прямой контактной распыленной с углом факела распыла 30° 60° 90° 120° (защитная завеса) | ||
Диаметр факела защитной завесы, м, не менее | 4 | 3 |
Габаритные размеры, мм, не более: длина высота |
№ п/п | Стволы пожарные ручные от ООО «ФИРМА КОНТРАГЕНТ» | m | Цена грн включая НДС с 08.07.15 | Артикул для заказа |
1 | Ствол ручной перекрывной СРП-50Е | 1,48 | 0,00 | 02035 |
2 | Ствол ручной перекрывной СРП-50А | 1,48 | 0,00 | 02036 |
3 | Ствол пожарный ручной РС-А(м), РС-Б(м) | 1,25 | 0,0 | 02037 |
4 | Ствол водо-пенный распылитель СВПР | 2 | 0,00 | 02038 |
5 | Ствол воздушно-пенный СВП (СПП) | 1,25 | 0,00 | 02039 |
6 | Ствол воздушно-пенный с эжекторным устройством СВПЭ-2 | 2,4 | 0,00 | 02040 |
7 | Ствол воздушно-пенный с эжекторным устройством СВПЭ-4 | 3,15 | 0,00 | 02041 |
8 | Ствол воздушно-пенный с эжекторным устройством СВПЭ-8 | 3,9 | 0,00 | 02042 |
9 | Генератор пены средней кратности ГПС-600 | 4,45 | 0,00 | 02012 |
Воздушно-пенные стволы типа СВП (СПП) и СВПЭ-2, 4, 8 — для получения воздушно-механической пены из водного раствора пенообразователя, формирования и направления ее струи при тушении пожара.
Основные характеристики стволов пожарных | СВП(СПП) | СВПЭ-2 | СВПЭ-4 | СВПЭ-8 |
Рабочее давление перед стволом, МПа (кгс/см2) | 0,6 (6) | 0,6 (6) | 0,6 (6) | 0,6 (6) |
Производительность по пене, м3/мин | — | 2 | 4 | 8 |
Расход воды, л/с | — | 4 | 7,9 | 16 |
Расход пенообразователя, л/ск расходу воды, % | 4,8-6,04,8-6 | 4-5 | 4-5 | 4-5 |
Кратность пены на выходе из ствола | 7 | 8 | 8 | 8 |
Дальность воздушно-пенной струи придавлении перед стволом 0,6 МПа, м, не менее | 28 | 15 | 18 | 20 |
Dy соединительной головки, мм | 70 | 50 | 70 | 80 |
Длина, мм | 500 | 574 | 710 | 842 |
Высота, мм | 128 | 100 | 128 | 142 |
Комплектация всасывающими рукавами | нет | есть | есть | есть |
Ствол водопенный распылитель СВПР — для формирования и подачи раздробленной струи воды в виде хлопьев воздушно-механической пены, которые могут использоваться для охлаждения незащищенных металлических конструкций, тушения пожаров твердых и жидких горючих материалов, а также создания водяных защитных экранов.
Основные характеристики стволов пожарных | СВПР |
Диапазон рабочих давлений, МПа | 0,4-0,6 |
Расход воды (водного раствора пенообразователя),л/с, при рабочем давлении, не менее | 4,8 |
Дальность подачи огнетушащих средств(максимальная по крайним каплям), м, не менее распыленной струи воды диспергированной в виде хлопьев, воздушно-механической пены | |
Орошаемая площадь при фиксированном положении,кв. м. | 25±2 |
Кратность воздушно-механической пены | 25±10 |
Габариты, мм, не более: длина ширина |
На сегодняшний день качество поставляемых нами стволов пожарных оценено жителями следующих городов Украины:
Симферополь Феодосия Ялта Киев Севастополь Винница Луцк Волынь, Владимир-Волынский Днепропетровск Днепродзержинск Жёлтые Воды Кривой Рог Новомосковск Белая Церковь Борисполь Кировоград Александрия Луганск, Мариуполь Славянск Житомир Бердичев Ужгород Виноградов Мукачево Хуст Запорожье Мелитополь Энергодар, Тернополь Новая Каховка Хмельницкий Черкассы Смела Умань Чернигов Новгород-Северский Черновцы…
Варианты для поиска: Ствол ручной перекрывной СРП-50Е паспорт, Ствол ручной перекрывной СРП-50А продам, Ствол пожарный ручной РС-А(м) стоимость, РС-Б(м) в Киеве, Ствол водо-пенный распылитель СВПР завод, Ствол воздушно-пенный СВП для тушения, стволы новые СПП, Ствол воздушно-пенный с эжекторным устройством СВПЭ-2 кто производит, Ствол воздушно-пенный с эжекторным устройством СВПЭ-4 гарантия производителя, Ствол воздушно-пенный с эжекторным устройством СВПЭ-8 купить в Харькове, бронзбойт, Наконечник на пожарном рукаве, устройство направляющее водяную струю, руководство, ствол ручной для тушения пожаров, ствол пожежний СВПР, тушіння пожеж СВП, металеий розпилювач води СПП, СВПЭ 2 установка, СВПЭ4 украинский, СВПЭ-8 в Донецке, СРП-50 Е, СРП 50А, РС-А м, РС-Бм в запорожье.
Видео:Ствол пожарный цельно алюминиевый РСК-50 с регулирующимся углом распыления! Производитель Украина!Скачать
Технические характеристики ручных пожарных стволов
Тип Показатели | РС-50 | РСП-50 | СРК-50 | РСК-50 | РС-70 | РСП-70 | РСКЗ-70 | |
Рабочее давление, МПа | 0,4-0,6 | 0,4-0,6 | 0,4-0,6 | 0,4-0,6 | 0,4-0,6 | 0,4-0,6 | 0,4-0,6 | |
Расход воды струи, л/с | сплошной | 3,6 | 2,7 | 2,7 | 2,7 | 7,4 | 7,4 | 7,4 |
распылен. | — | 2,0 | 2,0 | 2,0 | — | 7,0 | 7,0 | |
Дальность сплошной струи, м | 28-30 | |||||||
Угол факела завесы,º / диаметр факела, м | 120/3,0 | |||||||
Масса, кг | 0,7-1,0 | 1,1 | 1,8 | 1,9 | 1,5-1,8 | 2,8 | 2,5-3,0 |
Маркировка ручных пожарных стволов: Р –ручной, С –ствол, П –перекрывной, К – комбинированный, З –с защитной завесой, 50(70) –условный проход Dу50(Dу70).
Техника безопасности при работе со стволами:
Стволы должны исправными и герметичными. Герметичность стволов должна быть обеспечена при испытании гидравлическим давлением в 1,5 раза превышающем рабочее, а герметичность соединений – при рабочем давлении. Не допускается появление воды в виде капель.
• Запрещается надевать на себя лямку присоединенного к рукавной линии пожарного ствола при подъеме на высоту и при работе на высоте, подавать воду в незакрепленные рукавные линии и до выхода ствольщиков на исходные позиции.
• Подавать воду в рукавные линии следует постепенно, плавно повышая давление.
• Работа на пожарной лестнице со стволом допускается только после закрепления пояс-
ным карабином за ступеньку.
• Работа со стволом на крышах с крутыми скатами – обязательна с закреплением страхо-
вочными веревками за конструкции.
• Работа со стволом на высотах должна осуществляться расчетом не менее двух человек.
• Запрещается оставлять пожарный ствол без надзора даже после прекращения подачи
Лафетные пожарные стволы: назначение, устройство, характеристика. Техника безопасности при работе со стволами.
Лафетные пожарные стволы предназначены для получения мощных водяных или пенных струй при тушении крупных пожаров в случае недостаточной эффективности ручных пожарных стволов.
Лафетные пожарные стволы подразделяются на стационарные (С) –смонтированные на пожарном автомобиле, вышке или промышленном оборудовании (например – ЛС-С20У, –С40У и т.д.), возимые (В) – на прицепе и переносные (П) –(например СЛК-П20, ЛС-П20У, ЛСД-20У и т.д.)
Кроме того, стволы могут быть универсальные (У)– формирующие сплошную и распыленную с изменяемым углом факела струи воды, а также струю ВМП, перекрывные, имеющие переменный расход;
— без индекса (У), формирующие сплошную струю воды и струю ВМП. Индекс приво-
дится после цифр, указывающих расход воды.
В зависимости от вида управления стволы могут быть с дистанционным (Д)или ручным (без индексаУ) управлением. Индекс приводится после букв ЛС.
Пример условного обозначения лафетного ствола ЛСД-С-40Угде: ЛС –лафетный ствол, Д –с дистанционным управлением, С –стационарный, 40 –расход воды (л/с), У –универсальный.
Лафетный переносной ствол типа ПЛС-20П – предназначен для создания и направления струи воды или ВМП при тушении пожаров.
Состоит из приемного корпуса, поворотного тройника, двухрожкового разветвления, трубы, насадка. Приемный корпус закрепляется на съемной опоре (лафете), который сос-
тоит из двух симметрично изогнутых лап с шипами.
В приемном корпусе расположен обратный шарнирный клапан, позволяющий присоеди-
нять и заменять рукавные линии к напорному патрубку без прекращения работы ствола.
Поворотный корпус соединен с поворотным тройником, а он – с двухрожковым разветвлением. Поворотные соединения уплотнены кольцевыми резиновыми манжетами.
Внутри корпуса трубы установлен четырехполосной успокоитель (устройство, устраняющее явление вращения потока ОТВ поступающего из рукавов в ствол, которое ухудшает качество струи, т.е. разбивая сечение потока на несколько частей, способствует восстановлению осесимметричного распределения скоростей в потоке на параллельноструйное, не раздробленное).
Для подачи ВМП – водяной насадок на корпусе трубы заменяют на воздушно-пенный.
Технические характеристики:
—диаметр насадка, мм 22 28 32
— условное давление, кг/см² 6 6 6
—расход воды, л/с 19 23 30
—расход пены, м³/мин 12
—дальность струи, м:
воды 61 67 68
пены 32
—масса не более 27 кг
Ствол может вращаться вокруг вертикальной оси на 360º и перемещаться в вертикаль-
ной плоскости от 32 до 75º.
Техника безопасности при работе с лафетными стволами:
— стволы должны проходить ежегодное гидравлическое испытание давлением 0,8 МПа;
— в процессе эксплуатации стволы должны регулярно обслуживаться и осматриваться, особенно шарниры и соединения;
— при работе переносные стволы устанавливаются на ровную поверхность;
— работа с лафетным стволом осуществляется двумя пожарными.
Воздушно-пенные стволы: назначение, устройство, характеристика.
Техника безопасности при работе со стволами.
Воздушно-пенные стволы предназначены для получения из водного раствора пенообра-
зователя ВМП низкой кратности (до 20) и подачи ее в очаг пожара.
Стволы пожарные ручные СВПЭ и СВП имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасыва-
ния пенообразователя непосредственно у ствола из бака или др. емкости.
Ствол СВПЭ состоит из корпуса, на котором с одной стороны укреплена соединитель-
ная головка для подсоединения пожарного рукава, а с другой – кожух, в котором пенно-
образующий р-р перемешивается с воздухом и формируется пенная струя. В корпусе ствола имеется три камеры: приемная, вакуумная и выходная. На вакуумной камере рас-
положен ниппель диаметром 16 мм для присоединения шланга, через который всасывает-
Принцип работы ствола СВП: пенообразующий р-р, проходя через отверстия в корпусе, создает в конусной камере разряжение, благодаря чему воздух подсасывается через 8 отверстий, равномерно расположенных в кожухе ствола и интенсивно перемешивается
с пенообразующим раствором, образуя на выходе струю ВМП.
Работа ствола СВПЭ отличается от работы ствола СВП тем, что в приемную камеру пос-
тупает не пенообразующий р-р, а вода, которая, проходя по центральному отверстию, соз-
дает разряжение в вакуумной камере и в нее через ниппель подсасывается пенно-
Воздушно-пенные стволы надежны в работе. Пена низкого качества может образоваться из-за засорения центрального отверстия, попадания в камеры посторонних предметов или применение ПО с пониженными свойствами.
Технические характеристики стволов СВП-2 (СВПЭ-2), СВП-4 (СВПЭ-4), СВП-8(СВПЭ-8) соответственно: — напор 40-60 м; концентрация р-ра 6%; кратность пены – 8; производительность 2,4,8 м³/мин: дальность подачи 15,18,20 м.
Требования безопасности при работе с воздушно-пенными стволами не отличаются от требований безопасности при работе с ручными пожарными стволами. При заправке аобиля ПО л/с подразделения должен быть обеспечен защитными очками, непромока-
емыми рукавицами и защитной одеждой. При попадании на кожные покровы и в глаза – ПО смывается чисто водой или физраствором (2%-ая борная кислота).
Видео:Требуемые интенсивность подачи и расход ОТВ (Пожарная тактика)Скачать
Методика проведения пожарно-тактических расчетов
Видео:ПОЖАРНЫЙ КОУЧИНГ ОТ НАЧАЛЬНИКА СПТ (КАМЧАТКА)! 20 ЛЕТ ОПЫТА-ЗА 2,5 ЧАСА, ПОЖАРНЫЕ СЛУШАЛИ ОТКРЫВ РОТСкачать
Методика и формулы расчета сил и средств для тушения пожара
Расчеты сил и средств выполняют в следующих случаях:
- при определении требуемого количества сил и средств на тушение пожара;
- при оперативно-тактическом изучении объекта;
- при разработке планов тушения пожаров;
- при подготовке пожарно-тактических учений и занятий;
- при проведении экспериментальных работ по определению эффективности средств тушения;
- в процессе исследования пожара для оценки действий РТП и подразделений.
Видео:Расчет площади пожара. СЛОЖНЫЕ формы (Пожарная тактика)Скачать
Расчет сил и средств для тушения пожаров твердых горючих веществ и материалов водой (распространяющийся пожар)
Исходные данные для расчета сил и средств:
- характеристика объекта (геометрические размеры, характер пожарной нагрузки и ее размещение на объекте, размещение водоисточников относительно объекта);
- время с момента возникновения пожара до сообщения о нем (зависит от наличия на объекте вида средств охраны, средств связи и сигнализации, правильности действий лиц, обнаруживших пожар и т.д.);
- линейная скорость распространения пожара Vл;
- силы и средства, предусмотренные расписанием выездов и время их сосредоточения;
- интенсивность подачи огнетушащих средств Iтр.
1) Определение времени развития пожара на различные моменты времени.
Выделяются следующие стадии развития пожара:
- 1, 2 стадии свободного развития пожара, причем на 1 стадии (t до 10 мин) линейная скорость распространения принимается равной 50% ее максимального значения (табличного), характерного для данной категории объектов, а с момента времени более 10 мин она принимается равной максимальному значению;
- 3 стадияхарактеризуется началом введения первых стволов на тушение пожара, в результате чего линейная скорость распространения пожара уменьшается, поэтому в промежутке времени с момента введения первых стволов до момента ограничения распространения пожара (момент локализации), ее значение принимается равным 0,5Vл. В момент выполнения условий локализации Vл= 0.
- 4 стадия – ликвидация пожара.
tсв = tобн + tсооб + tсб + tсл + tбр (мин.), где
- tсв – время свободного развития пожара на момент прибытия подразделения;
- tобн– время развития пожара с момента его возникновения до момента его обнаружения (2 мин. – при наличии АПС или АУПТ, 2-5 мин. – при наличии круглосуточного дежурства, 5 мин. – во всех остальных случаях);
- tсооб – время сообщения о пожаре в пожарную охрану (1 мин. – если телефон находится в помещении дежурного, 2 мин. – если телефон в другом помещении);
- tсб= 1 мин. – время сбора личного состава по тревоге;
- tсл – время следования пожарного подразделения (2 мин. на 1 км пути);
- tбр – время боевого развертывания (3 мин. при подаче 1-го ствола, 5 мин. в остальных случаях).
2) Определение расстояния R, пройденного фронтом горения, за время t.
- где k= 1 – при круговой форме развития пожара (рис. 2),
- k= 0,5– при полукруговой форме развития пожара (рис. 4),
- k= 0,25 – при угловой форме развития пожара (рис. 3).
б) Площадь пожара при прямоугольной форме развития пожара.
- где n – количество направлений развития пожара,
- b – ширина помещения.
в) Площадь пожара при комбинированной форме развития пожара (рис 7)
Комбинированная форма пожара
4) Определение площади тушения пожара.
Площадь тушения Sт – это часть площади пожара, на которую осуществляется эффективное воздействие огнетушащими веществами.
Для практических расчетов используется параметр, называемый глубиной тушения hт, который равен для ручных стволов hт = 5 м, для лафетных hт = 10 м.
Тушение пожара производят, вводя стволы либо со всех сторон пожара – по периметру пожара (Рис. 8), либо на одном или нескольких направлениях, как правило, по фронту пожара (Рис. 9).
В некоторых случаях пожарные подразделения не могут подать огнетушащее средство одновременно на всю площадь пожара, например, при недостатке сил и средств, тогда тушение осуществляется по фронту распространяющегося пожара. При этом пожар локализуется на решающем направлении, а затем осуществляется процесс его тушения на других направлениях.
Тушение пожара по периметру и фронту
а) Площадь тушения пожара по периметру при круговой форме развития пожара.
- где r=R–hт ,
- hт – глубина тушения стволов (для ручных стволов – 5м, для лафетных – 10 м).
б) Площадь тушения пожара по периметру при прямоугольной форме развития пожара.
где а и b – соответственно длина и ширина фронта пожара.
где b и n – соответственно ширина помещения и количество направлений подачи стволов.
5) Определение требуемого расхода воды на тушение пожара.
Интенсивность подачи огнетушащих веществ Iтр – это количество огнетушащего вещества, подаваемое за единицу времени на единицу расчетного параметра.
Различают следующие виды интенсивности:
Линейная – когда в качестве расчетного принят линейный параметр: например, фронт или периметр. Единицы измерения – л/с∙м. Линейная интенсивность используется, например, при определении количества стволов на охлаждение горящих и соседних с горящим резервуаров с нефтепродуктами.
Поверхностная – когда в качестве расчетного параметра принята площадь тушения пожара. Единицы измерения – л/с∙м 2 . Поверхностная интенсивность используется в практике пожаротушения наиболее часто, так как для тушения пожаров в большинстве случаев используется вода, которая тушит пожар по поверхности горящих материалов.
Объемная – когда в качестве расчетного параметра принят объем тушения. Единицы измерения – л/с∙м 3 . Объемная интенсивность используется, преимущественно, при объемном тушении пожаров, например, инертными газами.
Требуемая Iтр – количество огнетушащего вещества, которое необходимо подавать за единицу времени на единицу расчетного параметра тушения. Определяется требуемая интенсивность на основе расчетов, экспериментов, статистических данных по результатам тушения реальных пожаров и т.д.
Фактическая Iф – количество огнетушащего вещества, которое фактически подано за единицу времени на единицу расчетного параметра тушения.
6) Определение требуемого количества стволов на тушение.
Рп – часть периметра, на тушение которого вводятся стволы
Рст = qст / Iтр ∙ hт – часть периметра пожара, которая тушится одним стволом. Р = 2·p ·L (длина окружности), Р = 2·а + 2·b (прямоугольник)
Стволы на тушение в складах со стеллажным хранением
- где n – количество направлений развития пожара (ввода стволов),
- m – количество проходов между горящими стеллажами,
- A – количество проходов между горящим и соседним негорящим стеллажами.
7) Определение требуемого количества отделений для подачи стволов на тушение.
где nст отд – количество стволов, которое может подать одно отделение.
8) Определение требуемого расхода воды на защиту конструкций.
- где Sз – защищаемая площадь (перекрытия, покрытия, стены, перегородки, оборудование и т.п.),
- Iзтр= (0,3-0,5)·Iтр – интенсивность подачи воды на защиту.
9) Водоотдача кольцевой водопроводной сети рассчитывается по формуле:
Q к сети = ((D/25) x Vв ) 2 [л/с], (40) где,
- D – диаметр водопроводной сети, [мм];
- 25 – переводное число из миллиметров в дюймы;
- Vв – скорость движения воды в водопроводе, которая равна:
- – при напоре водопроводной сети Hв =1,5 [м/с];
- – при напоре водопроводной сети H>30 м вод.ст. –Vв =2 [м/с].
Водоотдача тупиковой водопроводной сети рассчитывается по формуле:
Q т сети = 0,5 x Q к сети , [л/с].
10) Определение требуемого количества стволов на защиту конструкций.
Также количество стволов часто определяется без аналитического расчета из тактических соображений, исходя из мест размещения стволов и количества защищаемых объектов, например, на каждую ферму по одному лафетному стволу, в каждое смежное помещение по стволу РС-50.
11) Определение требуемого количества отделений для подачи стволов на защиту конструкций.
12) Определение требуемого количества отделений для выполнения других работ (эвакуация людей, мат. ценностей, вскрытия и разборки конструкций).
13) Определение общего требуемого количества отделений.
На основании полученного результата РТП делает вывод о достаточности привлеченных к тушению пожара сил и средств. Если сил и средств недостаточно, то РТП делает новый расчет на момент прибытия последнего подразделения по следующему повышенному номеру (рангу) пожара.
14) Сравнение фактического расхода воды Qф на тушение, защиту и водоотдачи сети Qвод противопожарного водоснабжения
15) Определение количества АЦ, устанавливаемых на водоисточники для подачи расчетного расхода воды.
На водоисточники устанавливают не всю технику, которая прибывает на пожар, а такое количество, которое обеспечило бы подачу расчетного расхода, т.е.
NАЦ = Qтр / 0,8 Qн ,
где Qн – подача насоса, л/с
Такой оптимальный расход проверяют по принятым схемам боевого развертывания, с учетом длинны рукавных линий и расчетного количества стволов. В любом из указанных случаев, если позволяют условия (в частности, насосно-рукавная система), боевые расчеты прибывающих подразделений должны использоваться для работы от уже установленных на водоисточники автомобилей.
Это не только обеспечит использование техники на полную мощность, но и ускорит введение сил и средств на тушение пожара.
В зависимости от обстановки на пожаре требуемый расход огнетушащего вещества определяют на всю площадь пожара или на площадь тушения пожара. На основании полученного результата РТП может сделать вывод о достаточности привлеченных к тушению пожара сил и средств.
Видео:Испытание СВП, ГПС, Пурга 5Скачать
Расчет сил и средств для тушения пожаров воздушно-механической пеной на площади
(не распространяющиеся пожары или условно приводящиеся к ним)
Исходные данные для расчета сил и средств:
- площадь пожара;
- интенсивность подачи раствора пенообразователя;
- интенсивность подачи воды на охлаждение;
- расчетное время тушения.
При пожарах в резервуарных парках за расчетный параметр принимают площадь зеркала жидкости резервуара или наибольшую возможную площадь разлива ЛВЖ при пожарах на самолетах.
На первом этапе боевых действий производят охлаждение горящих и соседних резервуаров.
1) Требуемое количество стволов на охлаждение горящего резервуара.
N зг ств = Q зг тр / qств = n ∙ π ∙ Dгор∙ I зг тр / qств, но не менее 3 х стволов,
I зг тр = 0,8 л/с∙м – требуемая интенсивность для охлаждения горящего резервуара,
I зг тр = 1,2 л/с∙м – требуемая интенсивность для охлаждения горящего резервуара при пожаре в обваловании,
Охлаждение резервуаров Wрез ≥ 5000 м 3 и более целесообразно осуществлять лафетными стволами.
2) Требуемое количество стволов на охлаждение соседнего не горящего резервуара.
N зс ств = Q зс тр / qств = n ∙ 0,5 ∙ π ∙ Dсос∙ I зс тр / qств, но не менее 2 х стволов,
I зс тр = 0,3 л/с∙м – требуемая интенсивность для охлаждения соседнего не горящего резервуара,
n – количество горящих или соседних резервуаров соответственно,
Dгор, Dсос – диаметр горящего или соседнего резервуара соответственно (м),
qств – производительность одного пожарного ствола (л/с),
Q зг тр, Q зс тр – требуемый расход воды на охлаждение (л/с).
3) Требуемое количество ГПС Nгпс на тушение горящего резервуара.
Nгпс = Sп ∙ I р-ор тр / q р-ор гпс (шт.),
Sп – площадь пожара (м 2 ),
I р-ор тр – требуемая интенсивность подачи раствора пенообразователя на тушение (л/с∙м 2 ). При tвсп ≤ 28 о C I р-ор тр = 0,08 л/с∙м 2 , при tвсп > 28 о C I р-ор тр = 0,05 л/с∙м 2 (см. приложение № 9)
q р-ор гпс – производительность ГПС по раствору пенообразователя (л/с).
4) Требуемое количество пенообразователя Wпо на тушение резервуара.
Wпо = Nгпс ∙ q по гпс ∙ 60 ∙ τр ∙ Кз (л),
τр = 15 минут – расчетное время тушения при подаче ВМП сверху,
τр = 10 минут – расчетное время тушения при подаче ВМП под слой горючего,
Кз = 3 – коэффициент запаса (на три пенные атаки),
q по гпс – производительность ГПС по пенообразователю (л/с).
5) Требуемое количество воды Wв т на тушение резервуара.
Wв т = Nгпс ∙ q в гпс ∙ 60 ∙ τр ∙ Кз (л),
q в гпс – производительность ГПС по воде (л/с).
6) Требуемое количество воды Wв з на охлаждение резервуаров.
Wв з = N з ств ∙ qств ∙ τр ∙ 3600 (л),
N з ств – общее количество стволов на охлаждение резервуаров,
qств – производительность одного пожарного ствола (л/с),
τр = 6 часов – расчетное время охлаждения наземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93),
τр = 3 часа – расчетное время охлаждения подземных резервуаров от передвижной пожарной техники (СНиП 2.11.03-93).
7) Общее требуемое количество воды на охлаждение и тушение резервуаров.
Wв общ = Wв т + Wв з (л)
8) Ориентировочное время наступления возможного выброса Т нефтепродуктов из горящего резервуара.
T= (H – h) / (W+ u + V) (ч), где
H – начальная высота слоя горючей жидкости в резервуаре, м;
h – высота слоя донной (подтоварной) воды, м;
W – линейная скорость прогрева горючей жидкости, м/ч (табличное значение);
u – линейная скорость выгорания горючей жидкости, м/ч (табличное значение);
V – линейная скорость понижения уровня вследствие откачки, м/ч (если откачка не производится, то V= 0).
Видео:8. Ликвидация горения. Основы расчёта сил и средств для тушения пожаров.Скачать
Тушение пожаров в помещениях воздушно-механической пеной по объему
При пожарах в помещениях иногда прибегают к тушению пожара объемным способом, т.е. заполняют весь объем воздушно-механической пеной средней кратности (трюмы кораблей, кабельные тоннели, подвальные помещения и т.д.).
При подаче ВМП в объем помещения должно быть не менее двух проемов. Через один проем подают ВМП, а через другой происходит вытеснение дыма и избыточного давления воздуха, что способствует лучшему продвижению ВМП в помещении.
1) Определение требуемого количества ГПС для объемного тушения.
Nгпс = Wпом ·Кр / qгпс ∙tн , где
Wпом – объем помещения (м 3 );
Кр = 3 – коэффициент, учитывающий разрушение и потерю пены;
qгпс – расход пены из ГПС (м 3 /мин.);
tн = 10 мин – нормативное время тушения пожара.
2) Определение требуемого количества пенообразователя Wпо для объемного тушения.
Wпо = Nгпс ∙ q по гпс ∙ 60 ∙ τр ∙ Кз (л),
Пропускная способность рукавов
Приложение № 1
Пропускная способность одного прорезиненного рукава длиной 20 метров в зависимости от диаметра
Пропускная способность, л/с
Диаметр рукавов, мм
Приложение № 2
Величины сопротивления одного напорного рукава длиной 20 м
Тип рукавов | Диаметр рукавов, мм | |||||
51 | 66 | 77 | 89 | 110 | 150 | |
Прорезиненные | 0,15 | 0,035 | 0,015 | 0,004 | 0,002 | 0,00046 |
Непрорезиненные | 0,3 | 0,077 | 0,03 | – | – | – |
Приложение № 3
Объем одного рукава длиной 20 м
Диаметр рукава, мм | 51 | 66 | 77 | 89 | 110 | 150 |
Объем рукава, л | 40 | 70 | 90 | 120 | 190 | 350 |
Приложение № 4
Геометрические характеристики основных типов стальных вертикальных резервуаров (РВС).
№ п/п | Тип резервуара | Высота резервуара, м | Диаметр резервуара, м | Площадь зеркала горючего, м 2 | Периметр резервуара, м |
1 | РВС-1000 | 9 | 12 | 120 | 39 |
2 | РВС-2000 | 12 | 15 | 181 | 48 |
3 | РВС-3000 | 12 | 19 | 283 | 60 |
4 | РВС-5000 | 12 | 23 | 408 | 72 |
5 | РВС-5000 | 15 | 21 | 344 | 65 |
6 | РВС-10000 | 12 | 34 | 918 | 107 |
7 | РВС-10000 | 18 | 29 | 637 | 89 |
8 | РВС-15000 | 12 | 40 | 1250 | 126 |
9 | РВС-15000 | 18 | 34 | 918 | 107 |
10 | РВС-20000 | 12 | 46 | 1632 | 143 |
11 | РВС-20000 | 18 | 40 | 1250 | 125 |
12 | РВС-30000 | 18 | 46 | 1632 | 143 |
13 | РВС-50000 | 18 | 61 | 2892 | 190 |
14 | РВС-100000 | 18 | 85,3 | 5715 | 268 |
15 | РВС-120000 | 18 | 92,3 | 6691 | 290 |
Приложение № 5
Линейные скорости распространения горения при пожарах на объектах.
Наименование объекта | Линейная скорость распространения горения, м/мин |
Административные здания | 1,0…1,5 |
Библиотеки, архивы, книгохранилища | 0,5…1,0 |
Жилые дома | 0,5…0,8 |
Коридоры и галереи | 4,0…5,0 |
Кабельные сооружения (горение кабелей) | 0,8…1,1 |
Музеи и выставки | 1,0…1,5 |
Типографии | 0,5…0,8 |
Театры и Дворцы культуры (сцены) | 1,0…3,0 |
Сгораемые покрытия цехов большой площади | 1,7…3,2 |
Сгораемые конструкции крыш и чердаков | 1,5…2,0 |
Холодильники | 0,5…0,7 |
Деревообрабатывающие предприятия: | |
Лесопильные цехи (здания I, II, III СО) | 1,0…3,0 |
То же, здания IV и V степеней огнестойкости | 2,0…5,0 |
Сушилки | 2,0…2,5 |
Заготовительные цеха | 1,0…1,5 |
Производства фанеры | 0,8…1,5 |
Помещения других цехов | 0,8…1,0 |
Лесные массивы (скорость ветра 7…10 м/с, влажность 40 %) | |
Сосняк | до 1,4 |
Ельник | до 4,2 |
Школы, лечебные учреждения: | |
Здания I и II степеней огнестойкости | 0,6…1,0 |
Здания III и IV степеней огнестойкости | 2,0…3,0 |
Объекты транспорта: | |
Гаражи, трамвайные и троллейбусные депо | 0,5…1,0 |
Ремонтные залы ангаров | 1,0…1,5 |
Склады: | |
Текстильных изделий | 0,3…0,4 |
Бумаги в рулонах | 0,2…0,3 |
Резинотехнических изделий в зданиях | 0,4…1,0 |
То же в штабелях на открытой площадке | 1,0…1,2 |
Каучука | 0,6…1,0 |
Товарно-материальных ценностей | 0,5…1,2 |
Круглого леса в штабелях | 0,4…1,0 |
Пиломатериалов (досок) в штабеля при влажности 16…18 % | 2,3 |
Торфа в штабелях | 0,8…1,0 |
Льноволокна | 3,0…5,6 |
Сельские населенные пункты: | |
Жилая зона при плотной застройке зданиями V степени огнестойкости, сухой погоде | 2,0…2,5 |
Соломенные крыши зданий | 2,0…4,0 |
Подстилка в животноводческих помещениях | 1,5…4,0 |
Приложение № 6
Интенсивность подачи воды при тушении пожаров, л/(м 2 .с)
1. Здания и сооружения | |
Административные здания: | |
I-III степени огнестойкости | 0.06 |
IV степени огнестойкости | 0.10 |
V степени огнестойкости | 0.15 |
подвальные помещения | 0.10 |
чердачные помещения | 0.10 |
Больницы | 0.10 |
2. Жилые дома и подсобные постройки: | |
I-III степени огнестойкости | 0.06 |
IV степени огнестойкости | 0.10 |
V степени огнестойкости | 0.15 |
подвальные помещения | 0.15 |
чердачные помещения | 0.15 |
3.Животноводческие здания: | |
I-III степени огнестойкости | 0.15 |
IV степени огнестойкости | 0.15 |
V степени огнестойкости | 0.20 |
4.Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры): | |
сцена | 0.20 |
зрительный зал | 0.15 |
подсобные помещения | 0.15 |
Мельницы и элеваторы | 0.14 |
Ангары, гаражи, мастерские | 0.20 |
локомотивные, вагонные, трамвайные и троллейбусные депо | 0.20 |
5.Производственные здания участки и цехи: | |
I-II степени огнестойкости | 0.15 |
III-IV степени огнестойкости | 0.20 |
V степени огнестойкости | 0.25 |
окрасочные цехи | 0.20 |
подвальные помещения | 0.30 |
чердачные помещения | 0.15 |
6. Сгораемые покрытия больших площадей | |
при тушении снизу внутри здания | 0.15 |
при тушении снаружи со стороны покрытия | 0.08 |
при тушении снаружи при развившемся пожаре | 0.15 |
Строящиеся здания | 0.10 |
Торговые предприятия и склады | 0.20 |
Холодильники | 0.10 |
7. Электростанции и подстанции: | |
кабельные тоннели и полуэтажи | 0.20 |
машинные залы и котельные помещения | 0.20 |
галереи топливоподачи | 0.10 |
трансформаторы, реакторы, масляные выключатели* | 0.10 |
8. Твердые материалы | |
Бумага разрыхленная | 0.30 |
Древесина: | |
балансовая при влажности, %: | |
40-50 | 0.20 |
менее 40 | 0.50 |
пиломатериалы в штабелях в пределах одной группы при влажности, %: | |
8-14 | 0.45 |
20-30 | 0.30 |
свыше 30 | 0.20 |
круглый лес в штабелях в пределах одной группы | 0.35 |
щепа в кучах с влажностью 30-50 % | 0.10 |
Каучук, резина и резинотехнические изделия | 0.30 |
Пластмассы: | |
термопласты | 0.14 |
реактопласты | 0.10 |
полимерные материалы | 0.20 |
текстолит, карболит, отходы пластмасс, триацетатная пленка | 0.30 |
Хлопок и другие волокнистые материалы: | |
открытые склады | 0.20 |
закрытые склады | 0.30 |
Целлулоид и изделия из него | 0.40 |
Ядохимикаты и удобрения | 0.20 |
* Подача тонкораспыленной воды.
Видео:Пожарная тактика. Как рассчитать расход из любого пожарного ствола при любом напореСкачать
Тактико-технические показатели приборов подачи пены
Прибор подачи пены | Напор у прибора, м | Концция р-ра, % | Расход, л/с | Кратность пены | Производ-сть по пене, м куб./мин(л/с) | Дальность подачи пены, м | ||
воды | ПО | р-ра ПО | ||||||
ПЛСК-20 П | 40-60 | 6 | 18,8 | 1,2 | 20 | 10 | 12 | 50 |
ПЛСК-20 С | 40-60 | 6 | 21,62 | 1,38 | 23 | 10 | 14 | 50 |
ПЛСК-60 С | 40-60 | 6 | 47,0 | 3,0 | 50 | 10 | 30 | 50 |
СВП | 40-60 | 6 | 5,64 | 0,36 | 6 | 8 | 3 | 28 |
СВП(Э)-2 | 40-60 | 6 | 3,76 | 0,24 | 4 | 8 | 2 | 15 |
СВП(Э)-4 | 40-60 | 6 | 7,52 | 0,48 | 8 | 8 | 4 | 18 |
СВП-8(Э) | 40-60 | 6 | 15,04 | 0,96 | 16 | 8 | 8 | 20 |
ГПС-200 | 40-60 | 6 | 1,88 | 0,12 | 2 | 80-100 | 12 (200) | 6-8 |
ГПС-600 | 40-60 | 6 | 5,64 | 0,36 | 6 | 80-100 | 36 (600) | 10 |
ГПС-2000 | 40-60 | 6 | 18,8 | 1,2 | 20 | 80-100 | 120 (2000) | 12 |
Видео:Пожарная тактика. Совмещенный график тушения пожараСкачать
Линейная скорость выгорания и прогрева углеводородных жидкостей
Наименование горючей жидкости | Линейная скорость выгорания, м/ч | Линейная скорость прогрева горючего, м/ч |
Бензин | До 0,30 | До 0,10 |
Керосин | До 0,25 | До 0,10 |
Газовый конденсат | До 0,30 | До 0,30 |
Дизельное топливо из газового конденсата | До 0,25 | До 0,15 |
Смесь нефти и газового конденсата | До 0,20 | До 0,40 |
Дизельное топливо | До 0,20 | До 0,08 |
Нефть | До 0,15 | До 0,40 |
Мазут | До 0,10 | До 0,30 |
Примечание: с увеличением скорости ветра до 8-10 м/с скорость выгорания горючей жидкости возрастает на 30-50 %. Сырая нефть и мазут, содержащие эмульсионную воду, могут выгорать с большей скоростью, чем указано в таблице.
Изменения и дополнения в Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках
(информационное письмо ГУГПС от 19.05.00 № 20/2.3/1863)
Таблица 2.1. Нормативные интенсивности подачи пены средней кратности для тушения пожаров нефти и нефтепродуктов в резервуарах
№ п/п | Вид нефтепродукта | Нормативная интенсивность подачи раствора пенообразователя, л м 2 с’ | ||
Пенообразователи общего назначения | Пенообразователи целевого назначения | |||
Углеводородные | Фторсодержащие | |||
не пленкообразующие | пленкообразующие | |||
1 | Нефть и нефтепродукты с Твсп 28° С и ниже и ГЖ, нагретыe выше Твсп | 0,08 | 0,06 | 0,05 |
2 | Нефть и нефтепродукты с Твсп более 28 °С | 0,05 | 0,05 | 0,04 |
3 | Стабильный газовый конденсат | – | 0,12 | 0,1 |
Примечание: Для нефти с примесями газового конденсата, а также для нефтепродуктов, полученных из газового конденсата, необходимо определение нормативной интенсивности в соответствии с действующими методиками.
Таблица 2.2. Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах*
№ п/п | Вид нефтепродукта | Нормативная интенсивность подачи раствора пенообразователя, л м 2 с’ | |||||
Фторсодержащие пенообразователи “не пленкообразующие” | Фторсинтетические “пленкообразующие” пенообразователи | Фторпротеиновые “пленкообразующие” пенообразователи | |||||
на поверхность | в слой | на поверхность | в слой | на поверхность | в слой | ||
1 | Нефть и нефтепродукты с Твсп 28° С и ниже | 0,08 | – | 0,07 | 0,10 | 0,07 | 0,10 |
2 | Нефть и нефтепродукты с Твсп более 28 °С | 0,06 | – | 0,05 | 0,08 | 0,05 | 0,08 |
3 | Стабильный газовый конденсат | 0,12 | – | 0,10 | 0,14 | 0,10 | 0,14 |
Видео:Особенности тушения пожара на электроустановкахСкачать
Основные показатели, характеризующих тактические возможности пожарных подразделений
Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:
- время работы стволов и приборов подачи пены;
- возможную площадь тушения воздушно-механической пеной;
- возможный объем тушения пеной средней кратности с учетом имеющегося на автомобиле запаса пенообразователя;
- предельное расстояние по подаче огнетушащих средств.
Расчеты приведены согласно Справочник руководителя тушения пожара (РТП). Иванников В.П., Клюс П.П., 1987
Видео:Подача лафетного стволаСкачать
Определение тактических возможностей подразделения без установки пожарного автомобиля на водоисточник
1) Определение формула времени работы водяных стволов от автоцистерны:
- где: tраб – время работы стволов, мин.;
- Vц – объем воды в цистерне пожарного автомобиля, л;
- Nр – число рукавов в магистральной и рабочих линиях, шт.;
- Vр – объем воды в одном рукаве, л (см. прилож.);
- Nст – число водяных стволов, шт.;
- Qст – расход воды из стволов, л/с (см. прилож.);
- k – коэффициент, учитывающий неровности местности (k = 1,2 – стандартное значение),
- L – расстояние от места пожара до пожарного автомобиля (м).
Дополнительно обращаем Ваше внимание, что в справочнике РТП Тактические возможности пожарных подразделений. Теребнев В.В., 2004 в разделе 17.1 приводится, точно такая же формула но с коэффициентом 0,9: Tраб = ( 0,9Vц – Np ·Vp) / Nст ·Qст ·60 (мин.)
2) Определение формула возможной площади тушения водой S Т от автоцистерны:
- где: Jтр– требуемая интенсивность подачи воды на тушение, л/с·м 2 (см. прилож.);
- tрасч= 10 мин. – расчетное время тушения.
3) Определение формула времени работы приборов подачи пены от автоцистерны:
- где: Vр-ра – объем водного раствора пенообразователя, полученный от заправочных емкостей пожарной машины, л;
- Nгпс – число ГПС (СВП), шт;
- Qгпс – расход раствора пенообразователя из ГПС (СВП), л/с (см. прилож.).
Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь.
КВ = 100–С / С = 100–6 / 6 = 94 / 6 = 15,7 – количество воды (л), приходящееся на 1 литр пенообразователя для приготовления 6-ти % раствора (для получения 100 литров 6-ти % раствора необходимо 6 литров пенообразователя и 94 литра воды).
Тогда фактическое количество воды, приходящееся на 1 литр пенообразователя, составляет:
- где Vц – объем воды в цистерне пожарной машины, л;
- Vпо – объем пенообразоователя в баке, л.
если Кф Кв , то Vр-ра = Vпо ·Кв + Vпо (л) – пенообразователь расходуется полностью, а часть воды остается.
4) Определение возможной формула площади тушения ЛВЖ и ГЖ воздушно-механической пеной:
- где: Sт – площадь тушения, м 2 ;
- Jтр – требуемая интенсивность подачи раствора ПО на тушение, л/с·м 2 ;
При tвсп ≤ 28 о C – Jтр = 0,08 л/с∙м 2 , при tвсп > 28 о C – Jтр = 0,05 л/с∙м 2 .
5) Определение формула объема воздушно-механической пены, получаемого от АЦ:
6) Определение возможного объема тушения воздушно-механической пеной:
- где: Vт – объем тушения пожара;
- Кз= 2,5–3,5 – коэффициент запаса пены, учитывающий разрушение ВМП вследствие воздействия высокой температуры и других факторов.
Примеры решения задач
Пример № 1. Определить время работы двух стволов Б с диаметром насадка 13 мм при напоре 40 метров, если до разветвления проложен один рукав d 77 мм, а рабочие линии состоят из двух рукавов d 51 мм от АЦ-40(131)137А.
Пример № 2. Определить время работы ГПС-600, если напор у ГПС-600 60 м, а рабочая линия состоит из двух рукавов диаметром 77 мм от АЦ-40 (130) 63Б.
1) Определяем объем водного раствора пенообразователя:
Пример № 3. Определить возможную площадь тушения бензина ВМП средней кратности от АЦ-4-40 (Урал-23202).
1) Определяем объем водного раствора пенообразователя:
2) Определяем возможную площадь тушения:
Пример № 4. Определить возможный объем тушения (локализации) пожара пеной средней кратности (К=100) от АЦ-40(130)63б (см. пример № 2).
Тогда объем тушения (локализации):
Видео:Тюменец придумал пожарный ствол для тушения пожаров без участия людейСкачать
Определение тактических возможностей подразделения с установкой пожарного автомобиля на водоисточник
1) Определение предельного расстояния по подаче огнетушащих средств:
Формула предельное расстояние подачи огнетушащих веществ
- Lпр – предельное расстояние (м),
- Hн= 90÷100 м – напор на насосе АЦ,
- Hразв= 10 м – потери напора в разветвлении и рабочих рукавных линиях,
- Hст= 35÷40 м – напор перед стволом,
- Zм – наибольшая высота подъема (+) или спуска (–) местности (м),
- Zст – наибольшая высота подъема (+) или спуска (–) стволов (м),
- S – сопротивление одного пожарного рукава,
- Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
2) Определение необходимого напора на пожарном насосе Hн:
3) Определение продолжительности работы водяных стволов от водоемов с ограниченным запасом воды:
Формула время работы пожарных стволов
- VПВ – запас воды в пожарном водоеме (л);
- VЦ – запас воды в цистерне пожарного автомобиля (л);
- Nрук – количество рукавов в магистральных и рабочих линиях (шт.);
- Vрук – объем одного рукава (л);
- NСТ – количество подаваемых стволов от пожарного автомобиля (шт.);
- qСТ – расход воды из ствола (л/с);
Коэффициент 0,9 говорит нам о том, что всю воду из водоема мы забрать не сможем.
4) Определение продолжительности работы приборов подачи пены:
Продолжительность работы приборов подачи пены зависит от запаса пенообразователя в заправочной емкости пожарного автомобиля или доставленного на место пожара.
Способ № 1 (по расходу водного раствора пенообразователя):
Np ·Vp = 0, т.к. весь водный раствор пенообразователя будет вытеснен из рукавов и примет участие в формировании ВМП (пенообразователь расходуется полностью, а вода остается), поэтому формула имеет окончательный вид:
Способ № 2 (по расходу запаса пенообразователя):
5) Определение возможного объема тушения (локализации) пожара:
Для ускоренного вычисления объема воздушно-механической пены средней кратности (К = 100, 4- и 6 % -ный водный раствор пенообразователя), получаемой от пожарных автомобилей с установкой их на водоисточник при расходе всего запаса пенообразователя, используют следующие формулы:
- где Vп – объем пены, м 3 ;
- Vпо – количество пенообразователя (л);
- 4 и 6 – количество пенообразователя (л), расходуемого для получения 1 м 3 пены соответственно при 4- и 6 % -ном растворе.
КВ = 100–С / С = 100–6 / 6 = 94 / 6
Кп – количество пены, получаемой из 1 литра пенообразователя (для 6% раствора).
Примеры решения задач
Пример № 1. Определить предельное расстояние по подаче ствола А с d насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм, если напор у стволов 40 м, напор на насосе 100 м, высота подъема местности 8 м, высота подъема стволов 12 м. Рукава магистральной линии d 77 мм.
Пример № 2. Определить время работы двух стволов А с d насадка 19 мм и 2-х стволов Б с диаметром насадка 13 мм от автонасоса, установленного на пожарный водоем вместимостью 50 м 3 . Расстояние от места установки разветвления до водоема 100 метров.
Пример № 3. Определить время работы двух ГПС-600 от АЦ-5.0-40 (КАМАЗ – 4310), установленной на пожарный гидрант.
Пример № 4. Определить возможный объем тушения (локализации) воздушно-механической пеной средней кратности, если использовался 6 %-ный раствор пенообразователя от АЦ-4-40 (ЗиЛ-433104).
Расчет основных показателей тактических возможностей подразделений позволяет заблаговременно определить возможный объем боевых действий на пожаре и их реальное выполнение.
Видео:Пожарный ствол ОРТ-50 при 0,8МПаСкачать
Организация бесперебойной подачи воды
Видео:ПОЖАРНЫЙ СТВОЛ ДЛЯ ТУШЕНИЯ ЛАНДШАФТНЫХ ПОЖАРОВ ИЗ ПОЛИПРОПИЛЕНОВЫХ ТРУБ И ФИТИНГОВ СВОИМИ РУКАМИ!Скачать
Методика расчета потребного количества пожарных автомобилей для перекачки воды к месту тушения пожара
Перекачку воды насосами пожарных машин применяют, если расстояние от водоисточника до места пожара велико (до 2 км), напор, развиваемый одним насосом, недостаточен для преодоления потерь напора в рукавных линиях и для создания рабочих пожарных струй.
Перекачка применяется также, если невозможен подъезд к водоисточнику для пожарных автомобилей (при крутых или обрывистых берегах, в заболоченных местах, при вымерзании пруда или реки у берегов и т.д.). Для этого способа перекачки применяют переносные технические устройства с установленными на них насосами (переносные пожарные мотопомпы).
Рис. 1. Схема подачи воды в перекачку
Расстояние в рукавах (штуках) | Расстояние в метрах |
1) Определение предельного расстояния от места пожара до головного пожарного автомобиля Nгол (Lгол). | |
2) Определение расстояния между пожарными машинами Nмм (Lмм), работающими в перекачку (длины ступени перекачки). | |
3) Определение количества ступеней перекачки Nст | |
4) Определение общего количества пожарных машин для перекачки Nавт | |
5) Определение фактического расстояния от места пожара до головного пожарного автомобиля N ф гол (L ф гол). | |
- Hн= 90÷100 м – напор на насосе АЦ,
- Hразв= 10 м – потери напора в разветвлении и рабочих рукавных линиях,
- Hст= 35÷40 м – напор перед стволом,
- Hвх≥ 10 м – напор на входе в насос следующей ступени перекачки,
- Zм – наибольшая высота подъема (+) или спуска (–) местности (м),
- Zст – наибольшая высота подъема (+) или спуска (–) стволов (м),
- S – сопротивление одного пожарного рукава,
- Q – суммарный расход воды в одной из двух наиболее загруженной магистральной рукавной линии (л/с),
- L – расстояние от водоисточника до места пожара (м),
- Nрук – расстояние от водоисточника до места пожара в рукавах (шт.).
Пример: Для тушения пожара необходимо подать три ствола Б с диаметром насадка 13 мм, максимальная высота подъема стволов 10 м. Ближайшим водоисточником является пруд, расположенный на расстоянии 1,5 км от места пожара, подъем местности равномерный и составляет 12 м. Определить количество автоцистерн АЦ−40(130) для перекачки воды на тушение пожара.
Решение:
1) Принимаем способ перекачки из насоса в насос по одной магистральной линии.
2) Определяем предельное расстояние от места пожара до головного пожарного автомобиля в рукавах.
NГОЛ = [HН − (НР ± ZМ ± ZСТ )] / SQ 2 = [90 − (45 + 0 + 10)] / 0,015 · 10,5 2 = 21,1 = 21.
3) Определяем предельное расстояние между пожарными автомобилями, работающими в перекачку, в рукавах.
NМР = [HН − (HВХ ± ZМ )] / SQ 2 = [90 − (10 + 12)] / 0,015 · 10,5 2 = 41,1 = 41.
4) Определяем расстояние от водоисточника до места пожара с учетом рельефа местности.
NР = 1,2 · L/20 = 1,2 · 1500 / 20 = 90 рукавов.
5) Определяем число ступеней перекачки
6) Определяем количество пожарных автомобилей для перекачки.
NАЦ = NСТУП + 1 = 2 + 1 = 3 автоцистерны
7) Определяем фактическое расстояние до головного пожарного автомобиля с учетом установки его ближе к месту пожара.
NГОЛ ф = NР − NСТУП · NМР = 90 − 2 · 41 = 8 рукавов.
Следовательно, головной автомобиль можно приблизить к месту пожара.
Видео:Пожарный ствол АСкачать
Методика расчета потребного количества пожарных автомобилей для подвоза воды к месту тушения пожара
Если застройка сгораемая, а водоисточники находятся на очень большом расстоянии, то время, затраченное на прокладку рукавных линий, будет слишком большим, а пожар скоротечным. В таком случае лучше подвозить воду автоцистернами с параллельной организацией перекачки. В каждом конкретном случае необходимо решать тактическую задачу, принимая во внимание возможные масштабы и длительность пожара, расстояние до водоисточников, скорость сосредоточения пожарных автомобилей, рукавных автомобилей и другие особенности гарнизона.
Подвоз воды осуществляется при удалении водоисточника на расстоянии более 2 км или, если имеются сложности в заборе воды и отсутствии технических средств, позволяющих забрать воду в неблагоприятных условиях.
Формула количество АЦ на подвоз воды
Формула время следование к водоисточнику
(мин.) – время следования АЦ к водоисточнику или обратно;
Формула время заправки АЦ
(мин.) – время заправки АЦ;
Формула расхода воды АЦ
(мин.) – время расхода воды АЦ на месте тушения пожара;
- L – расстояние от места пожара до водоисточника (км);
- 1 – минимальное количество АЦ в резерве (может быть увеличено);
- Vдвиж – средняя скорость движения АЦ (км/ч);
- Wцис – объем воды в АЦ (л);
- Qп – средняя подача воды насосом, заправляющим АЦ, или расход воды из пожарной колонки, установленной на пожарный гидрант (л/с);
- Nпр – число приборов подачи воды к месту тушения пожара (шт.);
- Qпр – общий расход воды из приборов подачи воды от АЦ (л/с).
Рис. 2. Схема подачи воды способом подвоза пожарными автомобилями.
Подвоз воды должен быть бесперебойным. Следует иметь в виду, что у водоисточников необходимо (в обязательном порядке) создавать пункт заправки автоцистерн водой.
Пример. Определить количество автоцистерн АЦ−40(130)63б для подвоза воды из пруда, расположенного в 2 км от места пожара, если для тушения необходимо подать три ствола Б с диаметром насадка 13 мм. Заправку автоцистерн осуществляют АЦ−40(130)63б, средняя скорость движения автоцистерн 30 км/ч.
Решение:
1) Определяем время следования АЦ к месту пожара или обратно.
tСЛ = L · 60 / VДВИЖ = 2 · 60 / 30 = 4 мин.
2) Определяем время заправки автоцистерн.
tЗАП = VЦ /QН · 60 = 2350 / 40 · 60 = 1 мин.
3)Определяем время расхода воды на месте пожара.
t РАСХ = VЦ / NСТ · QСТ · 60 = 2350 / 3 · 3,5 · 60 = 4 мин.
4) Определяем количество автоцистерн для подвоза воды к месту пожара.
NАЦ = [(2tСЛ + tЗАП ) / tРАСХ ] + 1 = [(2 · 4 + 1) / 4] + 1 = 4 автоцистерны.
Методика расчета подачи воды к месту тушения пожара с помощью гидроэлеваторных систем
При наличии заболоченных или густо заросших берегов, а так же при значительном расстоянии до поверхности воды (более 6,5-7 метров), превышающем глубину всасывания пожарного насоса (высокий крутой берег, колодцы и т.п.) необходимо применять для забора воды гидроэлеватор Г-600 и его модификации.
1) Определим требуемое количество воды VСИСТ, необходимое для запуска гидроэлеваторной системы:
VСИСТ = NР ·VР ·K ,
NР = 1,2·(L + ZФ) / 20,
- гдеNР− число рукавов в гидроэлеваторной системе (шт.);
- VР− объем одного рукава длиной 20 м (л);
- K − коэффициент, зависящий от количества гидроэлеваторов в системе, работающей от одной пожарной машины (К = 2 – 1 Г-600, K=1,5 – 2 Г-600);
- L – расстояние от АЦ до водоисточника (м);
- ZФ – фактическая высота подъема воды (м).
Определив требуемое количество воды для запуска гидроэлеваторной системы, сравнивают полученный результат с запасом воды, находящимся в пожарной автоцистерне, и выявляют возможность запуска данной системы в работу.
2) Определим возможность совместной работы насоса АЦ с гидроэлеваторной системой.
И = QСИСТ / QН ,
QСИСТ = NГ (Q1 + Q2),
- гдеИ – коэффициент использования насоса;
- QСИСТ− расход воды гидроэлеваторной системой (л/с);
- QН − подача насоса пожарного автомобиля (л/с);
- NГ− число гидроэлеваторов в системе (шт.);
- Q1 = 9,1 л/с − рабочий расход воды одного гидроэлеватора;
- Q2=10 л/с − подача одного гидроэлеватора.
При И 2 ) · 20 (м),
- где HН− напор на насосе пожарного автомобиля, м;
- НР− напор у разветвления (принимается равным: НСТ+10) , м;
- ZМ− высота подъема (+) или спуска (−) местности, м;
- ZСТ − высота подъема (+) или спуска (−) стволов, м;
- S − сопротивление одного рукава магистральной линии
- Q − суммарный расход из стволов, подсоединенных к одной из двух наиболее нагруженной магистральной линии, л/с.
Таблица 1.
Определение напора на насосе при заборе воды гидроэлеватором Г−600 и работе стволов по соответствующим схемам подачи воды на тушение пожара.
Высота подъема воды, м | Напор на насосе, м | ||
Один ствол А или три ствола Б | Два ствола Б | Один ствол Б | |
10 | 70 | 48 | 35 |
12 | 78 | 55 | 40 |
14 | 86 | 62 | 45 |
16 | 95 | 70 | 50 |
18 | 105 | 80 | 58 |
20 | – | 90 | 66 |
22 | – | 102 | 75 |
24 | – | – | 85 |
26 | – | – | 97 |
6) Определим общее количество рукавов в выбранной схеме:
- где NР.СИСТ− число рукавов гидроэлеваторной системы, шт;
- NМРЛ− число рукавов магистральной рукавной линии, шт.
Примеры решения задач с использование гидроэлеваторных систем
Пример. Для тушения пожара необходимо подать два ствола соответственно в первый и второй этажи жилого дома. Расстояние от места пожара до автоцистерны АЦ−40(130)63б, установленной на водоисточник, 240 м, подъем местности составляет 10 м. Подъезд автоцистерны до водоисточника возможен на расстояние 50 м, высота подъема воды составляет 10 м. Определить возможность забора воды автоцистерной и подачи ее к стволам на тушение пожара.
Решение:
1) Принимаем схему забора воды с помощью гидроэлеватора (см. рис. 3).
Рис. 3 Схема забора воды с помощью гидроэлеватора Г-600
2) Определяем число рукавов, проложенных к гидроэлеватору Г−600 с учетом неровности местности.
NР = 1,2· (L + ZФ) / 20 = 1,2 · (50 + 10) / 20 = 3,6 = 4
Принимаем четыре рукава от АЦ до Г−600 и четыре рукава от Г−600 до АЦ.
3) Определяем количество воды, необходимое для запуска гидроэлеваторной системы.
VСИСТ = NР ·VР ·K = 8· 90 · 2 = 1440 л 2 ) · 20 = [80 − (46 +10 + 6) / 0,015 · 7 2 ] · 20 = 490 м.
Следовательно, насос автоцистерны будет обеспечивать работу стволов т.к. 490 м > 240 м.
7) Определяем необходимое количество пожарных рукавов.
NР = NР .СИСТ + NМРЛ = NР .СИСТ + 1,2 L / 20 = 8 + 1,2 · 240 / 20 = 22 рукава.
К месту пожара необходимо доставить дополнительно 12 рукавов.
Принцип действия стволов воздушно-пенных СВП-4
Тушение пожара представляет сложный, опасный процесс. Используемый материал разнообразен. Это может быть вода, углекислота, песок или пена. Подача последнего производится специальным оборудованием, ярким представитель которого есть ствол воздушно-пенный СВП-4. Поговорим о нем подробнее.
Что такое пожарные стволы
Инструмент является одним из вариантов используемого при возгорании оборудования. Представляет устройство направления вещества в очаг. Элементы – корпус, соединительная головка, насадка. Изготавливается из пластика, латуни или алюминия.
Пожарные стволы
Зачем нужны и где применяются
Ствол для тушения возгорания является составляющей частью мотопомп, пожарных кранов, автомобилей. Могут подавать два вида струи – сплошную или распыленную.
Устройства, формирующие первый вариант материала, используются для ликвидации огня в труднодоступных местах. Изделия, подающие второй вид вещества, применяются при устранении пламени на большой площади. Задействуются при создании водной завесы.
Классификация
Находящиеся на вооружении сотрудников МЧС пожарные стволы бывают двух видов:
- Ручные. Используются для ликвидации огня со специальной техникой. Не эффективны при глубине тушения более 5 метров. Могут работать с разными насадками.
- Лафетные. Применяются на спецтехнике, противопожарных вышках. Отличаются наличием регулировочных механизмов, высотой посадки, комплектующими. Способны подавать распыленную струю, обеспечивающую защиту личного состава.
Особенности воздушно-пенных стволов
Существующие СВП имеют большой модельный ряд, отличающийся характеристиками. Поговорим подробно.
Назначение
Воздушно-пенные стволы эксплуатируются для образования из водного раствора с примесями необходимого материала, подачи в очаг. Максимальная кратность вылета вещества – 20.
Область использования
Устройства применяются при тушении возгораний в труднодоступных местах. Установка насадок позволяет подавать вещество на большое расстояние, что снижает риски при устранении огня.
Имеют определенный порядок проведения испытаний и обслуживания пожарных стволов. Об этом чуть ниже.
Устройство СВП
Существующие модели воздушно-пенных кранов имеют схожую конструкцию. Их составляющими являются:
- Корпус. Длина от 50 до 85 см.
- Рычаг перекрывающий.
- Рукоятка.
- Головка соединительная.
- Насадки.
Устройство воздушно-пенного ствола СВП
Современные модели способны изменять угол подачи, регулировать расход огнетушащего вещества. Образование пены выполняется за счет смешивания концентрата с водой. Обогащение кислородом происходит одним из трех способов (зависит от модели):
- Насыщение материала при выходе из ствола.
- Путем смешивания составляющих в пневмосистеме пожарного автомобиля.
- Методом эжекции. Заключается в применении дополнительного ниппеля с трубкой.
Активация подачи, регулировка количества раствора осуществляется путем перемещения рукоятки в необходимое положение.
Технические характеристики
Рабочие показатели СВП в зависимости от модели приведены в таблице ниже:
Принцип работы
Суть функционирования ствола СВП-4 или другой модели заключается в следующем:
- Пенообразователь подводится к корпусу по линии рукавов.
- При выходе с отверстия корпуса струя немного расширяется, тем самым создает вакуум в конусной камере.
- Осуществляется выброс огнетушащего материала под давлением.
Подающееся с насадки вещество необходимо направлять в очаг возгорания. При подготовке ствола к нему крепится направляющая раствор головка.
Техобслуживание
После устранения очага возгорания пожарный ствол моется водой, сушиться. Также выполняется проверка прочности резьбовых соединений. В случае выявления дефектов они ремонтируются или заменяются новыми.
Хранение требует соблюдения соответствующих условий. Воздействие агрессивных сред, атмосферных осадков должно быть минимальным.
Воздушно-пенные стволы
Стоимость
Цена пожарного ствола колеблется в диапазоне от 2 до 10 тыс. рублей. Она зависит от модели, используемого для изготовления материала. Устройство с пластика дешевле, с алюминия – дороже.
Требования и методы испытания пожарных стволов
Выполняемые проверки устройств имеют некую последовательность, должны соответствовать ряду норм. К ним относится:
- Проверка прочности, герметичности корпуса. Минимальное время нахождения под максимальным давлением 120 сек.
- Контроль количества используемой воды. Должен осуществляться при заявленном разработчиком давлении. Подразумевает применение расходомерных устройств или приборов учета. При недостаточном количестве материала площадь тушения СВП-4 может уменьшаться.
- Измерение дальности вылета сплошной струи на соответствие указанными производителем показателями. Выполняется на проверочной площадке с заранее установленными маяками.
- Осмотр комплектующих на наличие трещин, сколов или иных повреждений. При обнаружении несоответствия устройства подлежат замене.
Выводы
Основная задача при тушении пожара – локализовать очаг возгорания. Разнообразие используемых средств огромное. Одним из вариантов является СВП. Он эффективен при устранении пламени в труднодоступных местах, легок в использовании, обслуживании.
Испытание пожарных стволов проводится 1 раз в год, не требует наличия дополнительного оборудования. Конструкции надежны, эффективны.