площадь сложных фигур через интеграл

Видео:Интегралы №12 Вычисление площадейСкачать

Интегралы №12 Вычисление площадей

1.8. Как вычислить площадь с помощью определённого интеграла?

Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями площадь сложных фигур через интеграл.

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая площадь сложных фигур через интегралопределяет ось площадь сложных фигур через интеграл, прямые площадь сложных фигур через интегралпараллельны оси площадь сложных фигур через интеграли парабола площадь сложных фигур через интегралсимметрична относительно оси площадь сложных фигур через интеграл, для неё находим несколько опорных точек:
площадь сложных фигур через интеграл

Искомую фигуру желательно штриховать:
площадь сложных фигур через интеграл

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке площадь сложных фигур через интегралграфик функции площадь сложных фигур через интегралрасположен над осью площадь сложных фигур через интеграл, поэтому искомая площадь:
площадь сложных фигур через интеграл

Ответ: площадь сложных фигур через интеграл

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями площадь сложных фигур через интеграли осью площадь сложных фигур через интеграл

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью площадь сложных фигур через интеграл:

Пример 12
Вычислить площадь фигуры, ограниченной линиями площадь сложных фигур через интеграл, площадь сложных фигур через интеграли координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:
площадь сложных фигур через интеграл
и выполним чертёж, получая фигуру площадью около двух клеток:
площадь сложных фигур через интеграл
Если криволинейная трапеция расположена не выше оси площадь сложных фигур через интеграл, то её площадь можно найти по формуле: площадь сложных фигур через интеграл.
В данном случае: площадь сложных фигур через интеграл

Ответ: площадь сложных фигур через интеграл– ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями площадь сложных фигур через интеграл, площадь сложных фигур через интеграл.

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы площадь сложных фигур через интеграли прямой площадь сложных фигур через интеграл, поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:
площадь сложных фигур через интеграл
таким образом:
площадь сложных фигур через интеграл

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой площадь сложных фигур через интегралвсё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
площадь сложных фигур через интеграл– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:
площадь сложных фигур через интеграл

Выполним чертеж:
площадь сложных фигур через интеграл

А теперь рабочая формула: если на отрезке площадь сложных фигур через интегралнекоторая непрерывная функция площадь сложных фигур через интегралбольше либо равна непрерывной функции площадь сложных фигур через интеграл, то площадь фигуры, ограниченной графиками этих функций и отрезками прямых площадь сложных фигур через интеграл, можно найти по формуле:
площадь сложных фигур через интеграл

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке площадь сложных фигур через интегралпарабола располагается выше прямой, а поэтому из площадь сложных фигур через интегралнужно вычесть площадь сложных фигур через интеграл

Завершение решения может выглядеть так:

На отрезке площадь сложных фигур через интеграл: площадь сложных фигур через интеграл, по соответствующей формуле:
площадь сложных фигур через интеграл

Ответ: площадь сложных фигур через интеграл

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы площадь сложных фигур через интеграл. Поскольку ось площадь сложных фигур через интегралзадаётся уравнением площадь сложных фигур через интеграл, то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу площадь сложных фигур через интеграллибо площадь сложных фигур через интеграл

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) площадь сложных фигур через интеграл, площадь сложных фигур через интеграл.

б) площадь сложных фигур через интеграл, площадь сложных фигур через интеграл, площадь сложных фигур через интеграл

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями площадь сложных фигур через интеграл

Решение: выполним бесхитростный чертёж,
площадь сложных фигур через интеграл
хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую площадь сложных фигур через интегралможно недочертить до оси площадь сложных фигур через интеграл, и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке площадь сложных фигур через интегралнад осью площадь сложных фигур через интегралрасположен график прямой площадь сложных фигур через интеграл;
2) на отрезке площадь сложных фигур через интегралнад осью площадь сложных фигур через интегралрасположен график гиперболы площадь сложных фигур через интеграл.

Совершенно понятно, что площади можно (и нужно) сложить:
площадь сложных фигур через интеграл

Ответ: площадь сложных фигур через интеграл

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями площадь сложных фигур через интеграл, площадь сложных фигур через интеграл, площадь сложных фигур через интеграли координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс площадь сложных фигур через интегралзачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой площадь сложных фигур через интеграли прямой площадь сложных фигур через интеграл, где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:
площадь сложных фигур через интеграл
и находим его корни:
площадь сложных фигур через интегралнижний предел интегрирования, площадь сложных фигур через интегралверхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция площадь сложных фигур через интеграл(Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле площадь сложных фигур через интеграл, все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

Полную и свежую версию данного курса в pdf-формате ,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S ( G ) = ∫ a b f ( x ) d x для непрерывной и неотрицательной функции y = f ( x ) на отрезке [ a ; b ] ,

S ( G ) = — ∫ a b f ( x ) d x для непрерывной и неположительной функции y = f ( x ) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f ( x ) или x = g ( y ) .

Видео:Определённый интеграл. ПлощадьСкачать

Определённый интеграл.  Площадь

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Пусть функции y = f 1 ( x ) и y = f 2 ( x ) определены и непрерывны на отрезке [ a ; b ] , причем f 1 ( x ) ≤ f 2 ( x ) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 ( x ) и y = f 2 ( x ) будет иметь вид S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 ( y ) и x = g 2 ( y ) : S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) d y .

Разберем три случая, для которых формула будет справедлива.

площадь сложных фигур через интеграл

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

площадь сложных фигур через интеграл

Поэтому, S ( G ) = S ( G 2 ) — S ( G 1 ) = ∫ a b f 2 ( x ) d x — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S ( G ) = S ( G 2 ) + S ( G 1 ) = ∫ a b f 2 ( x ) d x + — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x

Графическая иллюстрация будет иметь вид:

площадь сложных фигур через интеграл

Если обе функции неположительные, получаем: S ( G ) = S ( G 2 ) — S ( G 1 ) = — ∫ a b f 2 ( x ) d x — — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x . Графическая иллюстрация будет иметь вид:

площадь сложных фигур через интеграл

Перейдем к рассмотрению общего случая, когда y = f 1 ( x ) и y = f 2 ( x ) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n — 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i — 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 x 1 x 2 . . . x n — 1 x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S ( G i ) = ∫ x i — 1 x i ( f 2 ( x ) — f 1 ( x ) ) d x , i = 1 , 2 , . . . , n

S ( G ) = ∑ i = 1 n S ( G i ) = ∑ i = 1 n ∫ x i x i f 2 ( x ) — f 1 ( x ) ) d x = = ∫ x 0 x n ( f 2 ( x ) — f ( x ) ) d x = ∫ a b f 2 ( x ) — f 1 ( x ) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

площадь сложных фигур через интеграл

Формулу S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f ( x ) и x = g ( y ) .

Видео:Площадь фигуры через интегралСкачать

Площадь фигуры через интеграл

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Необходимо определить площадь фигуры, которая ограничена параболой y = — x 2 + 6 x — 5 и прямыми линиями y = — 1 3 x — 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

площадь сложных фигур через интеграл

На отрезке [ 1 ; 4 ] график параболы y = — x 2 + 6 x — 5 расположен выше прямой y = — 1 3 x — 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S ( G ) = ∫ 1 4 — x 2 + 6 x — 5 — — 1 3 x — 1 2 d x = = ∫ 1 4 — x 2 + 19 3 x — 9 2 d x = — 1 3 x 3 + 19 6 x 2 — 9 2 x 1 4 = = — 1 3 · 4 3 + 19 6 · 4 2 — 9 2 · 4 — — 1 3 · 1 3 + 19 6 · 1 2 — 9 2 · 1 = = — 64 3 + 152 3 — 18 + 1 3 — 19 6 + 9 2 = 13

Ответ: S ( G ) = 13

Рассмотрим более сложный пример.

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

площадь сложных фигур через интеграл

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З : x ≥ — 2 x 2 = x + 2 2 x 2 — x — 2 = 0 D = ( — 1 ) 2 — 4 · 1 · ( — 2 ) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 — 9 2 = — 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке ( 2 ; 2 ) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S ( G ) = ∫ 2 7 ( x — x + 2 ) d x = x 2 2 — 2 3 · ( x + 2 ) 3 2 2 7 = = 7 2 2 — 2 3 · ( 7 + 2 ) 3 2 — 2 2 2 — 2 3 · 2 + 2 3 2 = = 49 2 — 18 — 2 + 16 3 = 59 6

Ответ: S ( G ) = 59 6

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = — x 2 + 4 x — 2 .

Решение

Нанесем линии на график.

площадь сложных фигур через интеграл

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и — x 2 + 4 x — 2 . При условии, что x не равно нулю, равенство 1 x = — x 2 + 4 x — 2 становится эквивалентным уравнению третьей степени — x 3 + 4 x 2 — 2 x — 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1 : — 1 3 + 4 · 1 2 — 2 · 1 — 1 = 0 .

Разделив выражение — x 3 + 4 x 2 — 2 x — 1 на двучлен x — 1 , получаем: — x 3 + 4 x 2 — 2 x — 1 ⇔ — ( x — 1 ) ( x 2 — 3 x — 1 ) = 0

Оставшиеся корни мы можем найти из уравнения x 2 — 3 x — 1 = 0 :

x 2 — 3 x — 1 = 0 D = ( — 3 ) 2 — 4 · 1 · ( — 1 ) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 — 13 2 ≈ — 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S ( G ) = ∫ 1 3 + 13 2 — x 2 + 4 x — 2 — 1 x d x = — x 3 3 + 2 x 2 — 2 x — ln x 1 3 + 13 2 = = — 3 + 13 2 3 3 + 2 · 3 + 13 2 2 — 2 · 3 + 13 2 — ln 3 + 13 2 — — — 1 3 3 + 2 · 1 2 — 2 · 1 — ln 1 = 7 + 13 3 — ln 3 + 13 2

Ответ: S ( G ) = 7 + 13 3 — ln 3 + 13 2

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = — log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = — log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

площадь сложных фигур через интеграл

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке ( 0 ; 0 ) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения — log 2 x + 1 = 0 , поэтому графики функций y = — log 2 x + 1 и y = 0 пересекаются в точке ( 2 ; 0 ) .

x = 1 является единственным корнем уравнения x 3 = — log 2 x + 1 . В связи с этим графики функций y = x 3 и y = — log 2 x + 1 пересекаются в точке ( 1 ; 1 ) . Последнее утверждение может быть неочевидным, но уравнение x 3 = — log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = — log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S ( G ) = ∫ 0 1 x 3 d x + ∫ 1 2 ( — log 2 x + 1 ) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S ( G ) = ∫ 0 2 x 3 d x — ∫ 1 2 x 3 — ( — log 2 x + 1 ) d x

В этом случае для нахождения площади придется использовать формулу вида S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) ) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и — log 2 x + 1 относительно x :

y = x 3 ⇒ x = y 3 y = — log 2 x + 1 ⇒ log 2 x = 1 — y ⇒ x = 2 1 — y

Получим искомую площадь:

S ( G ) = ∫ 0 1 ( 2 1 — y — y 3 ) d y = — 2 1 — y ln 2 — y 4 4 0 1 = = — 2 1 — 1 ln 2 — 1 4 4 — — 2 1 — 0 ln 2 — 0 4 4 = — 1 ln 2 — 1 4 + 2 ln 2 = 1 ln 2 — 1 4

Ответ: S ( G ) = 1 ln 2 — 1 4

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x — 3 , y = — 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = — 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x — 3 .

площадь сложных фигур через интеграл

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = — 1 2 x + 4 :

x = — 1 2 x + 4 О Д З : x ≥ 0 x = — 1 2 x + 4 2 ⇒ x = 1 4 x 2 — 4 x + 16 ⇔ x 2 — 20 x + 64 = 0 D = ( — 20 ) 2 — 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 — 144 2 = 4 П р о в е р к а : x 1 = 16 = 4 , — 1 2 x 1 + 4 = — 1 2 · 16 + 4 = — 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , — 1 2 x 2 + 4 = — 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ ( 4 ; 2 ) т о ч к а п е р е с е ч е н и я y = x и y = — 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x — 3 :

x = 2 3 x — 3 О Д З : x ≥ 0 x = 2 3 x — 3 2 ⇔ x = 4 9 x 2 — 4 x + 9 ⇔ 4 x 2 — 45 x + 81 = 0 D = ( — 45 ) 2 — 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 — 729 8 = 9 4 П р о в е р к а : x 1 = 9 = 3 , 2 3 x 1 — 3 = 2 3 · 9 — 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ ( 9 ; 3 ) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x — 3 x 2 = 9 4 = 3 2 , 2 3 x 1 — 3 = 2 3 · 9 4 — 3 = — 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = — 1 2 x + 4 и y = 2 3 x — 3 :

— 1 2 x + 4 = 2 3 x — 3 ⇔ — 3 x + 24 = 4 x — 18 ⇔ 7 x = 42 ⇔ x = 6 — 1 2 · 6 + 4 = 2 3 · 6 — 3 = 1 ⇒ ( 6 ; 1 ) т о ч к а п е р е с е ч е н и я y = — 1 2 x + 4 и y = 2 3 x — 3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

площадь сложных фигур через интеграл

Тогда площадь фигуры равна:

S ( G ) = ∫ 4 6 x — — 1 2 x + 4 d x + ∫ 6 9 x — 2 3 x — 3 d x = = 2 3 x 3 2 + x 2 4 — 4 x 4 6 + 2 3 x 3 2 — x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 — 4 · 6 — 2 3 · 4 3 2 + 4 2 4 — 4 · 4 + + 2 3 · 9 3 2 — 9 2 3 + 3 · 9 — 2 3 · 6 3 2 — 6 2 3 + 3 · 6 = = — 25 3 + 4 6 + — 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

площадь сложных фигур через интеграл

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x — 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = — 1 2 x + 4 ⇒ x = — 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S ( G ) = ∫ 1 2 3 2 y + 9 2 — — 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = ∫ 1 2 7 2 y — 7 2 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = 7 4 y 2 — 7 4 y 1 2 + — y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 — 7 4 · 2 — 7 4 · 1 2 — 7 4 · 1 + + — 3 3 3 + 3 · 3 2 4 + 9 2 · 3 — — 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S ( G ) = 11 3

Видео:Криволинейная трапеция и ее площадь. 11 класс.Скачать

Криволинейная трапеция и ее площадь. 11 класс.

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Видео:Площадь фигуры через двойной интеграл в полярных координатахСкачать

Площадь фигуры через двойной интеграл в полярных координатах

Геометрические приложения определенного интеграла

площадь сложных фигур через интегралФормулы для вычисления площадей фигур на плоскости, длин дуг кривых на плоскости, площадей поверхностей тел вращения и объемов тел с помощью определенного интеграла
площадь сложных фигур через интегралПримеры решения задач на вычисление площадей фигур на плоскости
площадь сложных фигур через интегралПример решения задачи на вычисление длины дуги кривой на плоскости
площадь сложных фигур через интегралВывод формул для объема пирамиды и для объема шара
площадь сложных фигур через интегралВывод формулы для площади сферы

площадь сложных фигур через интеграл

Видео:Вычисление площадей и объемов с помощью определённого интегралаСкачать

Вычисление площадей и объемов с помощью определённого интеграла

Формулы для вычисления площадей фигур на плоскости, длин дуг кривых на плоскости, площадей поверхностей тел вращения и объемов тел с помощью определенного интеграла

В данном разделе справочника приведена таблица, содержащая формулы, с помощью которых можно вычислить:

Площади криволинейных трапеций различного вида (площади фигур, ограниченных графиками функций);

Длины дуг кривых на плоскости;

Объемы тел, если известны площади их поперечных сечений;

Объемы тел, полученных при вращении криволинейных трапеций вокруг оси абсцисс Ox ;

Площади поверхностей тел, полученных при вращении графиков функций вокруг оси абсцисс Ox .

a Ox ,
а с боков – отрезками прямых

Площадь криволинейной трапеции, ограниченной сверху осью Ox , снизу – графиком функции

a Ox ,
а с боков – отрезками прямых

Объем тела, полученного при вращении криволинейной трапеции, ограниченной сверху графиком функции

a Ox ,
а с боков – отрезками прямых

вокруг оси Ox

Площадь поверхности тела, полученного при вращении графика функции

y = f (x), f (x) > 0, площадь сложных фигур через интеграл,

вокруг оси Ox

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

a Ox ,
а с боков – отрезками прямых

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Площадь криволинейной трапеции, ограниченной сверху осью Ox , снизу – графиком функции

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

a Ox ,
а с боков – отрезками прямых

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

a S (x) , площадь сложных фигур через интеграл.

Плоскость каждого поперечного сечения перпендикулярна оси Ox

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Объем тела, полученного при вращении криволинейной трапеции, ограниченной сверху графиком функции

a Ox ,
а с боков – отрезками прямых

вокруг оси Ox

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Площадь поверхности тела, полученного при вращении графика функции

y = f (x), f (x) > 0, площадь сложных фигур через интеграл,

вокруг оси Ox .

Применение формул, перечисленных в таблице, проиллюстрировано на примерах, содержащих, в частности, вывод формулы объема пирамиды, формул объема шара и площади сферы.

Видео:А.7.11 Вычисление площади и объема сложных фигурСкачать

А.7.11 Вычисление площади и объема сложных фигур

Примеры решения задач на вычисление площадей фигур на плоскости

Пример 1 . Найти площадь фигуры, ограниченной линиями

площадь сложных фигур через интеграл

Решение . Рассматриваемая фигура (рис. 1) состоит из двух частей: треугольника OAB и криволинейной трапеции ABCD.

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Пример 2 . Найти площадь криволинейной трапеции, изображенной на рисунке 2

площадь сложных фигур через интеграл

Решение . Площадь криволинейной трапеции ABCD вычисляется с помощью формулы для площади криволинейной трапеции с f (x)

площадь сложных фигур через интеграл.

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Ответ . площадь сложных фигур через интеграл.

Видео:§58 Вычисление площадей с помощью интегралов. Часть 1/2Скачать

§58 Вычисление площадей с помощью интегралов. Часть 1/2

Пример решения задачи на вычисление длины дуги кривой на плоскости

Пример 3 . Найти длину дуги графика функции

площадь сложных фигур через интеграл, 8 .

Решение . График рассматриваемой функции изображен на рисунке 3

площадь сложных фигур через интеграл

Для вычисления длины дуги AB нужно, в соответствии с формулой для длины дуги графика функции, вычислить определенный интеграл

РисунокФормулаОписание
площадь сложных фигур через интегралплощадь сложных фигур через интеграл
площадь сложных фигур через интегралплощадь сложных фигур через интеграл
площадь сложных фигур через интегралплощадь сложных фигур через интеграл
площадь сложных фигур через интегралплощадь сложных фигур через интеграл
площадь сложных фигур через интегралплощадь сложных фигур через интеграл
площадь сложных фигур через интегралплощадь сложных фигур через интеграл
площадь сложных фигур через интеграл(1)

площадь сложных фигур через интеграл

Подставим найденную производную в формулу (1), а затем вычислим полученные интегралы при помощи таблицы неопределенных интегралов и формулы Ньютона — Лейбница:

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Ответ . площадь сложных фигур через интеграл

Видео:Найти площадь фигуры, ограниченной линиями. Пример 1.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 1.

Вывод формул для объема пирамиды и для объема шара

Решение . Рассмотрим произвольную n — угольную пирамиду BA1A2 . An с вершиной B, высота BK которой равна H, а площадь основания A1A2 . An равна S. Обозначим через S (x) площадь сечения площадь сложных фигур через интегралэтой пирамиды плоскостью, параллельной параллельной основанию пирамиды и находящейся на расстоянии расстоянии x от вершины пирамиды B (рис. 4).

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Поскольку многоугольники площадь сложных фигур через интеграли A1A2 . An подобны с коэффициентом подобия площадь сложных фигур через интеграл, то площади этих многоугольников удовлетворяют равенству

площадь сложных фигур через интеграл(2)

Рассмотрим теперь в пространстве систему координат Oxyz и расположим нашу пирамиду BA1A2 . An так, чтобы ее вершина B совпала с началом координат O, а высота пирамиды BK оказалась лежащей на оси Ox (рис. 5).

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Тогда сечение площадь сложных фигур через интегралпирамиды и будет поперечным сечением, поскольку его плоскость перпендикулярна оси Ox.

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Итак, мы получили формулу для объема пирамиды

площадь сложных фигур через интеграл

котрой пользовались в различных разделах справочника.

Замечание . Совершенно аналогично выводится формула для объема конуса. Формулы для объема прямой призмы объема прямой призмы и для объема цилиндра вывести таким способом еще проще, поскольку у них все сечения, перпендикулярные высоте, равны между собой. Мы рекомендуем провести эти выводы читателю самостоятельно в качестве полезного упражнения.

Пример 5 . Вывести формулу для объема шара радиуса R, воспользовавшись формулой для вычисления объема тела вращения.

площадь сложных фигур через интеграл(3)

графиком которой является верхняя полуокружность радиуса R с центром в начале координат O. Шар радиуса R получается в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной сверху графиком функции (3) и ограниченной снизу отрезкомплощадь сложных фигур через интегралоси Ox (рис. 6).

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

что и должно было получиться.

Видео:07 Вычисление площадей плоских фигур с помощью определённого интегралаСкачать

07 Вычисление площадей плоских фигур с помощью определённого интеграла

Вывод формулы для площади сферы

Решение . Снова рассмотрим функцию

площадь сложных фигур через интеграл(4)

графиком которой является верхняя полуокружность радиуса R с центром в начале координат O (рис. 7).

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Поскольку сфера радиуса R получается в результате вращения вокруг оси Ox графика функции (4), то в соответствии с формулой для вычисления площади поверхности тела вращения получаем

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Подставим найденную производную в выражение, стоящее под знаком квадратного корня:

площадь сложных фигур через интеграл

площадь сложных фигур через интеграл

Таким образом, подынтегральная функция принимает вид:

📸 Видео

Площадь фигуры, ограниченной линиями.Скачать

Площадь фигуры, ограниченной линиями.

Площадь фигурыСкачать

Площадь фигуры

Вычисление площадей с помощью интеграловСкачать

Вычисление площадей с помощью интегралов

Вычисление простого определенного интегралаСкачать

Вычисление простого определенного интеграла

Нахождение площади сложной фигуры (ДВИ. МГУ 2006)Скачать

Нахождение площади сложной фигуры (ДВИ. МГУ 2006)

Применение определенного интеграла при решении геометр. и физических задач. Практ. часть. 11 класс.Скачать

Применение определенного интеграла при решении геометр. и физических задач. Практ. часть. 11 класс.

Площади сложных фигур 3 задание проф. ЕГЭ по математике (СТАРОЕ ЗАДАНИЕ)Скачать

Площади сложных фигур 3 задание проф. ЕГЭ по математике (СТАРОЕ ЗАДАНИЕ)

15.1 Найдите площадь фигурыСкачать

15.1 Найдите площадь фигуры

Вычисление площади фигур с помощью интегралаСкачать

Вычисление площади фигур с помощью интеграла
Поделиться или сохранить к себе: