- iSopromat.ru
- Тема 2.2. Растяжение и сжатие. Продольные и поперечные деформации. Закон Гука
- Расчет брусьев на растяжение-сжатие. Определение
- Геометрических характеристик плоских сечений
- РАСЧЕТ БРУСЬЕВ НА РАСТЯЖЕНИЕ-СЖАТИЕ.
- ОПРЕДЕЛЕНИЕ
- ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
- ПЛОСКИХ СЕЧЕНИЙ
- Рис. 3
- Определим усилия и напряжения в стержнях. Заданная система является один раз статически неопределимой, так как возникающие четыре опорные реакции (R1, R2, R3, R4) (рис. 4) не могут быть определены из трех уравнений равновесия статики (SХ = 0, SY = 0, SМ = 0).
- Таким образом задача является статически неопределимой. Степень статической неопределимости равна 1. При действии силы Q в стержнях 1 и 2 будут возникать продольные силы N1 и N2, (рис. 5) численно равные реакциям R1 и R2. Выразим их через заданную нагрузку Q, используя метод сечений.
- Уравнение равновесия отсеченной части имеет вид
- Условие совместности деформаций (2) перепишется так
- ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
- ПЛОСКИХ СЕЧЕНИЙ
- РАСЧЕТ БРУСЬЕВ НА РАСТЯЖЕНИЕ-СЖАТИЕ.
- ОПРЕДЕЛЕНИЕ
- ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
- ПЛОСКИХ СЕЧЕНИЙ
- 💡 Видео
Видео:Подбор сечения балкиСкачать
iSopromat.ru
Подборка формул для расчета элементов и конструкций на растяжение-сжатие и решения задач сопротивления материалов по расчету нормальных напряжений, деформаций и перемещения сечений стержней при продольном нагружении.
Обозначения в формулах:
Формула для расчета напряжений в поперечном сечении стержня
Расчет минимальной площади поперечного сечения бруса
Расчет допустимой величины внешней растягивающей/сжимающей силы (определение грузоподъемности)
Расчет перемещения сечений
Здесь: δ i — перемещение рассматриваемого сечения,
δ i-1 — перемещение предыдущего сечения,
Δ li — деформация участка между указанными сечениями.
Здесь α — угол отклонения сечения от поперечного.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:6. Определение характеристик сечения ( практический курс по сопромату )Скачать
Тема 2.2. Растяжение и сжатие. Продольные и поперечные деформации. Закон Гука
Иметь представление о продольных и поперечных деформациях и их связи.
Знать закон Гука, зависимости и формулы для расчета напряжений и перемещений.
Уметь проводить расчеты на прочность и жесткость статически определимых брусьев при растяжении и сжатии.
Деформации при растяжении и сжатии
Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).
В сопротивлении материалов принято рассчитывать деформации в относительных единицах:
Между продольной и поперечной деформациями существует зависимость
где μ— коэффициент поперечной деформации, или коэффициент Пуассона, —характеристика пластичности материала.
Закон Гука
В пределах упругих деформаций деформации прямо пропорциональны нагрузке:
где F — действующая нагрузка; к — коэффициент. В современной форме:
где Е — модуль упругости, характеризует жесткость материала.
В пределах упругости нормальные напряжения пропорциональны относительному удлинению.
Значение Е для сталей в пределах (2 – 2,1) • 10 5 МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:
Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
Используем известные формулы.
В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:
Δl — абсолютное удлинение, мм;
σ — нормальное напряжение, МПа;
l — начальная длина, мм;
Е — модуль упругости материала, МПа;
N — продольная сила, Н;
А — площадь поперечного сечения, мм 2 ;
Произведение АЕ называют жесткостью сечения.
Выводы
1. Абсолютное удлинение бруса прямо пропорционально величине продольной силы в сечении, длине бруса и обратно пропорционально площади поперечного сечения и модулю упругости.
2. Связь между продольной и поперечной деформациями зависит от свойств материала, связь определяется коэффициентом Пуассона, называемом коэффициентом поперечной деформации.
Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.
3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная деформация рассчитывается через продольную.
где Δа — поперечное сужение, мм;
ао — начальный поперечный размер, мм.
4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяжения (рис. 21.2).
При работе пластические деформации не должны возникать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расчеты в сопротивлении материалов проводятся в зоне упругих деформаций, где действует закон Гука.
На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1.
5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.
Примеры решения задач
Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.
Решение
1. Брус ступенчатый, поэтому следует построить эпюры продольных сил и нормальных напряжений.
Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.
2. Определяем величины нормальных напряжений по сечениям с учетом изменений площади поперечного сечения.
Строим эпюру нормальных напряжений.
3. На каждом участке определяем абсолютное удлинение. Результаты алгебраически суммируем.
Примечание. Балка защемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со свободного конца (справа).
1. Два участка нагружения:
2.
Три участка по напряжениям:
Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормальных напряжений по его длине, а также определить перемещения свободного конца и сечения С, где приложена сила Р2. Модуль продольной упругости материала Е = 2,1 • 10 5 Н/’мм 3 .
Решение
1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.
2. Вычислим напряжения в поперечных сечениях каждого участка:
Эпюра нормальных напряжений построена на рис. 2.9, в.
3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса определяется как алгебраическая сумма удлинений (укорочений) всех его участков:
Подставляя числовые значения, получаем
4. Перемещение сечения С, в котором приложена сила Р2, определяется как алгебраическая сумма удлинений (укорочений) участков ///, IV, V:
Подставляя значения из предыдущего расчета, получаем
Таким образом, свободный правый конец бруса перемещается вправо, а сечение, где приложена сила Р2, — влево.
5. Вычисленные выше значения перемещений можно получить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р1; Р2; Р3 в отдельности и суммируя результаты. Рекомендуем учащемуся проделать это самостоятельно.
Пример 3. Определить, какое напряжение возникает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l1 = 200,2 мм. Е = 2,1*10 6 Н/мм 2 .
Решение
Абсолютное удлинение стержня
Продольная деформация стержня
Согласно закону Гука
Пример 4. Стенной кронштейн (рис. 2.10, а) состоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F1 = 1 см 2 , площадь сечения подкоса F2 = 25 см 2 . Определить горизонтальное и вертикальное перемещения точки В, если в ней подвешен груз Q = 20 кН. Модули продольной упругости стали Eст = 2,1*10 5 Н/мм 2 , дерева Ед = 1,0*10 4 Н/мм 2 .
Решение
1. Для определения продольных усилий в стержнях АВ и ВС вырезаем узел В. Предполагая, что стержни АВ и ВС растянуты, направляем возникающие в них усилия N1 и N2 от узла (рис. 2.10, 6). Составляем уравнения равновесия:
Усилие N2 получилось со знаком минус. Это указывает на то, что первоначальное предположение о направлении усилия неверно — фактически этот стержень сжат.
2. Вычислим удлинение стальной тяги Δl1 и укорочение подкоса Δl2:
Тяга АВ удлиняется на Δl1 = 2,2 мм; подкос ВС укорачивается на Δl1 = 7,4 мм.
3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если деформированные стержни АВ1 и В2С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В1 и В2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В1В’ и В2В’, соответственно перпендикулярными к АВ1 и СВ2. Пересечение этих перпендикуляров (точка В’) дает новое положение точки (шарнира) В.
4. На рис. 2.10, г диаграмма перемещений точки В изображена в более крупном масштабе.
5. Горизонтальное перемещение точки В
где составляющие отрезки определяются из рис. 2.10, г;
Подставляя числовые значения, окончательно получаем
При вычислении перемещений в формулы подставляются абсолютные значения удлинений (укорочений) стержней.
Контрольные вопросы и задания
1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)
2. Что характеризует коэффициент поперечной деформации?
3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.
4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?
5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?
6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?
7. Ответьте на вопросы тестового задания.
Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычислить, когда этот.
Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор.
ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Видео:Основы Сопромата. Геометрические характеристики поперечного сеченияСкачать
Расчет брусьев на растяжение-сжатие. Определение
Видео:Двухступенчатый брус. Построение эпюр продольных сил N и нормальных напряжений σ . СопроматСкачать
Геометрических характеристик плоских сечений
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Саратовский государственный технический университет
Видео:Площадь круга. Математика 6 класс.Скачать
РАСЧЕТ БРУСЬЕВ НА РАСТЯЖЕНИЕ-СЖАТИЕ.
Видео:Осевое растяжение (сжатие).Решаем ступенчатый брус.Скачать
ОПРЕДЕЛЕНИЕ
Видео:Расчёт стержневой системы. Жесткий брус. Растяжение. СопроматСкачать
ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
Видео:Понимание напряжений в балкахСкачать
ПЛОСКИХ СЕЧЕНИЙ
по курсу «Сопротивление материалов» для студентов
специальностей 151001.65, 240801.65, 260601.65
В элементах конструкций при действии внешних сил возникают внутренние силы упругости. При осевом растяжении (сжатии) стержня в его сечениях возникают только продольные силы N. Для их вычисления применяется метод сечений. Растягивающие продольные силы принято считать положительными, а сжимающие – отрицательными. Мерой внутренних сил является напряжение, оно характеризует интенсивность внутренних сил в точках сечения. При осевом растяжении (сжатии) стержня в его поперечных сечениях действуют только нормальные напряжения s. Знак s определяется знаком N. При растяжении стержня его длина увеличивается, а поперечные размеры уменьшаются. При сжатии – наоборот. В результате изменения длины стержня его сечения совершают линейные перемещения d вдоль продольной оси Z.
В задаче 1 проводится вычисление продольных усилий, нормальных напряжений в поперечных сечениях стержня, определение перемещений сечений стержня, а также построение соответствующих эпюр. Так как основной задачей расчета конструкции является обеспечение ее прочности в условиях эксплуатации, то также определяется коэффициент запаса прочности.
Стержни и стержневые системы, в которых внутренние усилия могут быть определены при помощи уравнений равновесия статики, называются статически определимыми. Стержни и системы, внутренние усилия в которых нельзя определить при помощи одних лишь уравнений статики, называются статически неопределимыми. Для их расчета необходимо рассмотреть систему в деформированном состоянии и составить дополнительные уравнения, связывающие перемещения элементов системы, Раскрытие статической неопределимости системы показано в задаче 2.
При центральном растяжении-сжатии и при чистом сдвиге прочность и жесткость стержня зависит от простейшей геометрической характеристики – площади поперечного сечения А. При других видах деформации, например, кручение и изгиб, прочность и жесткость стержня определяются не только площадью поперечного сечения стержня, но и формой сечения. Поэтому для расчета на прочность и жесткость в этих случаях приходится использовать более сложные геометрические характеристики сечений: статические моменты – Sx и Sy; моменты инерции: осевые Jx и Jy, центробежный Jxy, полярный Jp; моменты сопротивления: осевые Wx и Wy, полярный Wp. В задаче 3 определяются геометрические характеристики плоского сечения стержня, состоящего из двух прокатных профилей.
РАСЧЕТ СТУПЕНЧАТОГО БРУСА НА РАСТЯЖЕНИЕ–СЖАТИЕ
Для ступенчатого стального бруса (рис. 1, а), выполненного из стали марки Ст. 3, имеющей предел текучести sТ = 240 МПа, модуль Юнга
E = 2×105 MПа, требуется:
1. Построить по длине бруса эпюры продольных сил N, нормальных напряжений s и перемещений поперечных сечений d.
2. Вычислить коэффициент запаса прочности бруса n.
Проведем ось z, совпадающую с осью бруса. Направление оси выбираем произвольно. Брус жестко защемлен верхним концом в опоре, в которой возникает опорная реакция R. Направление вектора реакции выбираем произвольно. Величину опорной реакции найдем из уравнения равновесия статики:
∑ FZ = 0; R – F1 + F2 = 0; R = F1 — F2 == 24 кН.
Разделим брус на силовые участки. Границами участков являются поперечные сечения бруса, проходящие через точки приложения внешних нагрузок и сечения, в которых изменяется площадь поперечного сечения бруса. Точки пересечения оси бруса и граничных сечений обозначим буквами B, C, D, K. Получим 3 участка бруса.
Используем метод сечений. На каждом участке проводим сечения I-I,
II-II, III-III. При этом одну из частей бруса (более сложную) мысленно отбрасываем и к плоскости сечения оставшейся части бруса прикладываем вектор продольной силы N в направлении внешней нормали к сечению. Рассматриваем равновесие оставшейся части бруса (рис. 2).
Уравнения равновесия статики на каждом участке запишутся:
на первом участке BC (рис. 2, а) ∑ FZ = 0; R – N1 = 0; N1 = R = 24 кН;
на втором участке CD (рис. 2, б) ∑ FZ = 0; R – N2 = 0; N2 = R = 24 кН;
на третьем участке DK (рис. 2, в) ∑ FZ = 0; N3 + F2 = 0; N3 = — F2 = — 42 кН.
Проведем вертикальную линию (рис. 1, б), параллельную оси y и отложим от нее в выбранном масштабе на каждом участке вдоль этой линии положительные значения продольной силы вправо, а отрицательные влево. Получим эпюру продольных сил N (рис. 1, б).
Определим нормальные напряжения σ, МПа, на каждом участке бруса по формуле
где N, Н – продольная сила на данном участке; А, м2 – площадь поперечного сечения данного участка.
На первом участке BC
На втором участке CD
На третьем участке DK
Проведем вертикальную линию (рис. 1, в), параллельную оси y и отложим в выбранном масштабе на каждом участке вдоль этой линии положительные значения нормальных напряжений вправо, а отрицательные влево. Получим эпюру нормальных напряжений σ.
Найдем удлинения ∆ℓ, м, участков бруса по формуле
,
где N, Н – продольная сила на данном участке; ℓ, м — длина данного участка; Е, МПа – модуль Юнга материала бруса на данном участке; А, см2 – площадь поперечного сечения данного участка.
На первом участке ВС
.
На втором участке CD
.
На третьем участке DK
.
Определим перемещения сечений бруса, проходящих через границы участков. Перемещение сечения, проходящего через точку В равно нулю, так как в жесткой заделке нет перемещений, т. е. δВ = 0.
Между точками B и C находится первый участок. Перемещение сечения C будет равно δC = δВ + ∆ℓ1 = 0 + 0,72 · 10-4 = 0,72 · 10-4 м.
Между точками C и D находится второй участок. Перемещение сечения D будет равно δD = δC + ∆ℓ2 = 0,72 · 10-4 + 0,8 · 10-4 = 1,52 · 10-4 м.
Между точками D и K находится третий участок. Перемещение сечения D будет равно δK = δD + ∆ℓ3 = 1,52 · 1,8 · 10-4 = -1,28 · 10-4 м.
Отложим в выбранном масштабе на граничных сечениях положительные значения перемещений сечений вправо, а отрицательные влево. Получим эпюру перемещений сечений бруса δ (рис. 1, г).
Найдем коэффициент запаса прочности бруса по формуле
РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ
Абсолютно жесткий брус (рис. 3) закреплен с помощью шарнирно-неподвижной опоры и двух стержней и нагружен силой Q. Требуется:
1. найти усилия и напряжения в стержнях, выразив их через силу Q;
2. из расчета по допускаемым напряжениям найти допускаемую нагрузку [Q], приравняв большее из напряжений в двух стержнях допускаемому напряжению [σ] = 160 МПа;
3. из расчета по допускаемым нагрузкам найти предельную грузоподъемность системы и допускаемую нагрузку QДОП, если предел текучести σТ = 240 МПа и запас прочности n = 1,5;
4. сравнить величины [Q] и QДОП, полученные при расчете по допускаемым напряжениям и допускаемым нагрузкам.
Видео:Подбор сечения бруса. Эпюры нормальных и касательных напряжений.Скачать
Рис. 3
Видео:29. Жесткий брус. Растяжение-сжатие ( практический курс по сопромату )Скачать
Определим усилия и напряжения в стержнях. Заданная система является один раз статически неопределимой, так как возникающие четыре опорные реакции (R1, R2, R3, R4) (рис. 4) не могут быть определены из трех уравнений равновесия статики (SХ = 0, SY = 0, SМ = 0).
Видео:Основы Сопромата. Теория 1. Растяжение - сжатие стержняСкачать
Таким образом задача является статически неопределимой. Степень статической неопределимости равна 1. При действии силы Q в стержнях 1 и 2 будут возникать продольные силы N1 и N2, (рис. 5) численно равные реакциям R1 и R2. Выразим их через заданную нагрузку Q, используя метод сечений.
Видео:Построение эпюры касательных напряженийСкачать
Уравнение равновесия отсеченной части имеет вид
(1)
Составлять уравнения и не имеет смысла, так как в них войдут не интересующие нас реакции опоры О (R3, R4). Таким образом, мы убеждаемся еще раз, что задача статически неопределима (в единственное уравнение статики (1) входят две неизвестные силы N1 и N2; нагрузку Q в этом уравнении считаем заданной).
Для составления дополнительного уравнения рассмотрим деформацию системы. Под действием нагрузки Q абсолютно жесткий брус CD, оставаясь прямым, повернется вокруг шарнира О и займет положение C1D1 (рис.6). Точка В опишет дугу, которую вследствие малости угла С1ОС заменим хордой ВВ1. Величина ВВ1 представляет собой удлинение второго стержня = ВВ1. Так как упругие деформации малы по сравнению с длинами стержней, то считают, что угол между абсолютно жестким брусом CD и ВК не изменился, то есть . Из рис. 3 следует, что a = 45°. При этом стержни 1 и 2 удлиняются соответственно на величины и .
Удлинение стержня 1 () получаем на чертеже, опустив перпендикуляр ВМ из точки В на КВ1 (положение стержня 1 после деформации).
Из прямоугольного треугольника ВВ1М (рис.6) следует, что
(2)
На основании закона Гука (отрезок МВ1) и (отрезок ВВ1). При составлении этих выражений следует соблюдать соответствие направления нормальных сил N1 и N2 деформациям стержней 1 и 2. В данном случае стержни 1 и 2 растягиваются и силы N1 и N2 – растягивающие.
Условие совместности деформаций (2) перепишется так
(3)
Из рис. 3 видно, что — длина стержня 1; ℓ 2 = в – длина стержня 2. Тогда выражение (3) получает вид
(4)
Так как a = 45°, то получаем: N1 = N2. Решая совместно уравнения (1) и (4), получаем
N1 = N2 = 0,488 · Q.
После определения усилий N1 и N2 находим величины нормальных напряжений s1 и s2 в стержнях 1 и 2:
Определим допускаемую силу [Q]. из расчета по допускаемым напряжениям. Так как s2 > s1, то состояние второго стержня более опасно. Поэтому для определения допускаемой силы [Q]. следует приравнять напряжение во втором стержне s2 допускаемому напряжению [s] = 160 МПа.
(кН/м2)
244 [Q]. = 160 · 103 ; [Q]. = кН.
Допускаемая нагрузка [Q]. = 655,74 кН.
Определим допускаемую силу QДОП. из расчета по допускаемым нагрузкам. Напряжение во втором стержне оказалось больше, чем в первом, то есть s2 > s1. При увеличении силы Q напряжение во втором стержне достигнет предела текучести раньше, чем в первом. Когда это произойдет, напряжение во втором стержне не будет некоторое время увеличиваться, система станет как бы статически определимой, нагруженной силой Q и усилием во втором стержне
.
При дальнейшем увеличении силы напряжение в первом стержне также достигнет предела текучести. Усилие в этом стержне будет равно
Запишем уравнение равновесия статики для такого состояния системы
где sТ = 240 МПа – предел текучести материала.
Из этого уравнения находим предельную грузоподъемность системы
кН.
Допускаемая нагрузка QДОП определится так
кН,
где n = 1,5 – коэффициент запаса прочности.
Сравнивая полученные результаты, видим, что допускаемая нагрузка QДОП, определенная из расчета по допускаемым нагрузкам, больше допускаемой нагрузки [Q], из расчета по допускаемым напряжениям в
раза.
Способ расчета по допускаемым нагрузкам для статически неопределимых систем позволяет вскрыть дополнительные резервы прочности, повысить несущую способность системы и указывает на возможность более экономного расходования материала.
Видео:15. Правило Верещагина ( практический курс по сопромату )Скачать
ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
Видео:Основы Сопромата. Расчеты на прочность. Общая идеяСкачать
ПЛОСКИХ СЕЧЕНИЙ
Рассмотрим пример на определение геометрических характеристик плоского сечения. Сечение (рис. 7) состоит из швеллера № 30 и равнополочного уголка 100х100х10. Требуется:
1. Определить положение центра тяжести поперечного сечения.
2. Найти осевые и центробежный моменты инерции относительно случайных осей (XC и YC), проходящих через центр тяжести.
3. Определить положение главных центральных осей u и v.
4. Найти моменты инерции относительно главных центральных осей.
5. Вычертить сечение в масштабе 1 : 2 и указать на нем все размеры в числах и все оси.
Выпишем из таблиц сортамента все данные, необходимые для расчёта, и схематично зарисуем профили элементов сечения (рис. 8).
Швеллер № 30 по ГОСТ 8240-89. Площадь А = 40,50 см2. Моменты инерции относительно собственных центральных осей: Jх = 5810,0 см4,
Jу = 387,0 см4, Jху=0. Так как одна из осей является осью симметрии, то оси будут главными и центробежный момент относительно них равен нулю. Центр тяжести расположен на расстоянии z0 = 2,52 см от стенки швеллера.
Уголок равнополочный 100х100х10 по ГОСТ 8509-86. Площадь
А = 19,24 см2. Моменты инерции Jх = Jу = 178,95 см4, см4, см4. Расстояние от центра тяжести уголка до наружных граней полок z0 = 2,83 см. Угол между осями Х и Х0 равен 45º. Для дальнейшего расчёта понадобится величина центробежного момента инерции уголка Jху. Её можно вычислить по формуле
Так как для равнополочного уголка 45º, то sin 2 = sin 90º = 1.
Знак центробежного момента инерции уголка выбирается в соответствии с рис. 9. При положениях уголка (рис.9, а) и (рис.9, б) центробежный момент инерции отрицательный, а при положениях уголка (рис.9, в) и (рис.9, г) центробежный момент инерции положительный.
Прежде чем приступить к дальнейшему расчёту, необходимо с соблюдением масштаба (в задании задачи – это масштаб 1:2) начертить сечение,
(рис.Так как сечение состоит из 2 элементов, пронумерованных цифрами I, II, необходимо ввести соответствующие индексы в обозначении центров тяжестей (01, 02), центральных осей x1, y1, x2, y2 и соответствующих моментов инерции. Из рис. 10 видно, что центральные оси швеллера x1 и y1 соответствуют осям y и x швеллера на рис. 8. Соответственно поменяются местами осевые моменты инерции швеллера.
Определим координаты центра тяжести сечения относительно вспомогательных осей x и y (рис. 10). Оси удобно провести так, чтобы все сечение располагалось в первом квадрате. Найдём координаты центров тяжести элементов в системе осей x и y. Из рис. 10 видно, что О1(15;2,52), О2(22,17;3,48). Координаты центра тяжести сечения находятся по формулам:
;
.
В масштабе наносим точку С с координатами Хс=17,31 и Ус=2,82 см на расчётную схему и проводим через т. С оси xс и yс, параллельные осям x и y. Находим координаты центров тяжестей О1 и О2 элементов в полученной системе координат xсСyс.
Пользуясь формулами связи между координатами точки относительно параллельных осей координат, получим:
см;
см;
см;
см.
Для проверки правильности нахождения координат центра тяжести сечения найдём статистические моменты всего сечения относительно центральных осей xс и yс. Известно, что статические моменты сечения относительно центральных осей должны быть равны нулю:
см3;
см3.
Близкие к нулю значения Sx и Sy показывают, что координаты центра тяжести сечения найдены правильно. Отличие их от нуля – накопленная погрешность вычисления.
Определим осевые и центробежный моменты инерции сечения относительно произвольных центральных осей xсyс. Используем формулы зависимостей между моментами инерции относительно параллельных осей:
;
; .
Определим направление главных центральных осей u и v. Тангенс угла наклона главных центральных осей u и v к произвольным центральным осям xс и yс определяется по формуле
.
По найденному значению тангенса с помощью таблиц или калькулятора находим значение угла , откуда . Положительный угол откладывается от оси xс против хода часовой стрелки и определяет положение одной из главных центральных осей – u. Вторая главная центральная ось – v перпендикулярна оси u.
Покажем на расчётной схеме (рис. 10) положение главных центральных осей u и v.
Для проверки правильности определения положения главных центральных осей найдём центробежный момент инерции относительно этих осей u и v по формуле:
.
Центробежный момент инерции относительно главных осей должен быть равным нулю. Полученная близкая к нулю величина JUV показывает, что положение главных осей определено достаточно точно.
Определим моменты инерции относительно главных осей. Величины главных моментов инерции находятся по формуле:
;
Jmax = 6660,90 см4; Jmin = 511,86 см4.
Максимальный момент инерции Jmax будет относительно той главной центральной оси, которая ближе расположена к произвольной центральной оси, момент инерции относительно которой имеет наибольшее значение, то есть в нашем случае это есть ось v – она ближе всего к оси yс с максимальным . Таким образом, получаем:
Jv = Jmax = 6660,90 см4; Ju = Jmin = 511,86 см4.
Для контроля определения Jv и Ju проверим, выполняется ли равенство:
Jv + Ju; 318,01 + 6654,74 = 7172,75 см4 ;
Jv + Ju = 511,86 + 6660,90 = 7172,76 см4.
С той же целью найдём центробежный момент инерции по известным главным центральным моментам инерции Jv и Ju и углу по формуле
.
Незначительное отличие от ранее найденного значения =194,47 см4 свидетельствует о достаточной точности определения положения главных центральных осей и величин главных центральных моментов инерции.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
1. Какие случаи деформации бруса называются центральным растяжением или сжатием?
2. Как вычисляется значение продольной силы в произвольном поперечном сечении бруса?
3. Как вычисляются напряжения при центральным растяжении или
сжатии?
4. Как формулируется закон Гука? Что называется жесткостью сечения при растяжении (сжатии)?
5. Что называется модулем Юнга Е? Какова его размерность?
6. Что называется допускаемым напряжением? Как оно выбирается для пластичных и хрупких материалов?
7. Какие конструкции являются статически определимыми, а какие – статически неопределимыми?
8. Каким образом проводится расчет статически неопределимых конструкций?
9. Чем отличается расчет по допускаемым напряжениям от расчета по допускаемым нагрузкам?
10. Как находятся координаты центра тяжести сечения?
11. Какие оси называются главными?
12. Для каких сечений можно без вычислений установить положение главных осей?
13. Чему равен центробежный момент инерции относительно главных осей?
14. Какие оси называются центральными?
15. Относительно каких центральных осей осевые моменты инерции принимают наибольшее и наименьшее значения?
1. Александров материалов: учебник для вузов / , , ; под ред. . – 5-е изд., стер. – М.: Высш. шк., 2007. – 560 с.
2. Вольмир материалов / , ; под ред. . – М.: Высш. шк., 2007 . – 412 с.
3. Гильман материалов: учеб. пособие / . – Саратов: СГТУ, 2003. – 108 с.
4. Сопротивление материалов: учеб. пособие / , , и др.; под ред. . – 3-е изд., перераб. и доп. – М.: Высшая школа, 2007. – 488 с.
5. Феодосьев материалов: учебник / . – 13-е изд., стер. – М.: Изд-во МГТУ им. , 2005. – 592 с.
6. ГОСТ 8509-86. Сталь прокатная угловая равнополочная. Сортамент. – М.: Изд-во стандартов, 1987. – 6 с.
7. ГОСТ 8240-89. Сталь горячекатанная. Швеллеры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.
8. ГОСТ 8239-89. Сталь горячекаменная. Двутавры. Сортамент // Сортамент черных металлов. Прокат и калибровочная сталь. – М.: Изд-во стандартов, 1990.
Видео:Статически неопределимый брус. Растяжение-сжатие. Сопромат.Скачать
РАСЧЕТ БРУСЬЕВ НА РАСТЯЖЕНИЕ-СЖАТИЕ.
Видео:Формула ЖуравскогоСкачать
ОПРЕДЕЛЕНИЕ
Видео:Изгиб балок. Нормальные, касательные напряжения. Формула Журавского. Сопромат - Тайные Знания 5.Скачать
ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
ПЛОСКИХ СЕЧЕНИЙ
к выполнению контрольной работы
Составили: ГИЛЬМАН Александр Абрамович
ПОПОВА Наталья Евгеньевна
Подписано в печать Формат 60х84 1/16
Бум. офсет. Усл. печ. л. Уч.-изд. л
Тираж 100 экз. Заказ Бесплатно
Саратовский государственный технический университет
Саратов, Политехническая ул., 77
Отпечатано в РИЦ СГТУ. Саратов, Политехническая ул., 77
💡 Видео
Опасное сечение балкиСкачать
Определение усилий, напряжений и перемещений. СопроматСкачать