- 4.4. Объемы и поверхности тел вращения
- Как найти площадь поверхности вращения с помощью интеграла
- Вычисление площади поверхности вращения, заданной в прямоугольных координатах
- Вычисление площади поверхности вращения, заданной параметрически
- Вычисление площади поверхности вращения, заданной в полярных координатах
- Эллипсоиды
- Определение эллипсоида
- Плоские сечения эллипсоида
- Эллипсоиды вращения
- 🌟 Видео
Видео:Вычисление площади поверхности вращения и разбор задач.Скачать
4.4. Объемы и поверхности тел вращения
I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.
508. Вычислить объем тела, образуемого вращением эллипса Вокруг оси Ох.
Решение. При вращении эллипса вокруг оси Ox образуется тело, называемое эллипсоидом вращении. Как известно, объем тела, образованного вращением вокруг оси Ox криволинейной трапеции, ограниченной сверху кривой у = f<x), ординатами х = а, х = Ь и осью Ох, вычисляется по формуле:
Из уравнения эллипса видно, что большая его полуось равна 2, следовательно, . Разрешив уравнение
эллипса относительно , получим Объем
эллипсоида вращения равен:
509. Найти объем тора, образованного вращением круга
Вокруг оси Ox (рис. 18). Решение. Искомый объем тора равен разности объемов, полученных от вращения верхнего и нижнего полукругов. Так как для верхнего полукруга
, а для нижнего , то
Б10. Вычислить объем прямого конуса, высота которого h и радиус основания г, рассматривая конус как тело вращения прямоугольного треугольника около одного из катетов.
Решение. Выберем систему координат так, чтобы ось Ox совпала с высотой h (рис. 19), а вершину конуса
примем за начало координат. Тогда уравнение прямой OA
Следовательно, объем конуса
запишется так: будет равен:
511. Вычислить объемы тел, образованных вращением около осей Ox и Oy сегмента AOB параболы , от
секаемого хордой AFB, проходящей через фокус параболы перпендикулярно к оси Ox (рис. 20, а, б).
Решение I. Вычислим объем тела, получаемого при вращении сегмента AOB вокруг оси Ох, пользуясь формулой:
Найдем пределы интегрирования. Прямая AB параллельна оси Oy. Ее уравнение . Для того чтобы
найти точки пересечения этой прямой с параболой, решим совместно систему уравнений:
мя я AB проходит через фокус параболы, то координаты точки F будут Следовательно,
Получим точки . Так Kaw пря
2. Вычислим объем тела, получаемого при вращении сегмента AOB вокруг оси Oy. Учитывая симметрию сегмента относительно оси Oxi найдем сначала половину искомого объема. Она равна разности объемов тел, получаемых от вращения вокруг оси Oy прямоугольника OFBD и криволинейного тоеугольника OBD. Так как объем цилиндра равен , а объем Тела, полученного от вращения криволинейного треугольника OBD вокруг оси Oy, будет:
512. Фигура, ограниченная гиперболой И
то половина искомого объема равна:
Следовательно, весь искомый объем
прямыми , вращается вокруг оси
Ох. Найти объем тела вращения.
Решение. В результате вращения данной фигуры вокруг оси Ox образуются два тела вращения, имеющие равные объемы Тогда
Найдем объем V1 тела (рис. 21), сбразованного вращением площади, ограниченной правей ветвью гиперболы И прямей Пределы интегрирова
ния найдем из геометрических соображений:
513. Вычислить объем тела, образованного вращением вокруг оси Ox одной полуволны синусоиды у = sin х.
514. Найти объем конуса, производимого вращением вокруг оси Ox части прямой _ , содержащейся между осями координат.
515. Криволинейная трапеция, ограниченная срерху параболой ,с боков—ординатами х = — I и х—, снизу — осью Ох, вращается вокруг оси Ох. Найти объем полученного тела вращения.
516. Вычислить объем тела, образованного вращением вокруг оси Ox площади, ограниченной цепной линией
, ординатами X = — а, х = а и осью Ох.
517. Прямой параболический сегмент, основание которого а, а высота R, вращается вокруг основания. Определить объем полученного тела вращения.
518. Найти объем цирка, осевое сечение которого — парабола. Высота цирка 30 м. Диаметр основания 50 м.
519. Найти объем тела, образованного вращением кривой Вокруг оси абсцисс.
520. Вычислить объем тела, полученного вращением
астроиды Вокруг оси Oy.
521. На кривой Взяты две точки А и В, абсциссы которых соответственно а = I и Ь = 2. Найти объем тела, полученного вращением криволинейной трапеции аАВЬ вокруг оси Ох.
522. Найти объем тела, производимого вращением площади, ограниченной дугой циклоиды ,
И осью Ox вокруг ее основания.
523. Вычислить объем тела, образованного вращением вокруг оси ординат дуги OM циклоиды ,
, ограниченной точками О (0, 0) и M (та*, 2а).
524. Найти объем тела, ограниченного поверхностью, полученной при вращении линии
вокруг оси абсцисс.
2. Площадь поверхности тела вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п° 205. В теоретическом курсе показано, что площадь поверхности тела вращения определяется по формуле:
52$. Определить площадь поверхности параболоида, образованного вращением дуги параболы у2 = 2х вокруг оси Ox от х = 0 до х = 2.
Решение. В нашем случае . Поэтому
526. Найти площадь поверхности шара радиуса R. Решение. Поместим начало координат в центре шара. Будем рассматривать поверхность шара как поверхность, полученную в результате вращения полуокружности Вокруг оси Ох. Тогда площадь поверхности шара найдется по формуле:
527. Найти площадь поверхности эллипсоида, образованного вращением эллипса Вокруг оси Ох.
Решение. Из уравнения эллипса имеем:
Тогда . Так как полуось эллипса
Если кривая задана параметрически, то, заменяя переменную под знаком определенного интеграла, получим для площади поверхности следующую формулу:
528 Вычислить площадь поверхности, сбразованной вращением одной арки циклоиды
Вокруг оси Ox (см. рис. 13).
Тогда . Искомая по
Решение. Построим данную кривую. Найдем точки пересечения ее с осями координат.
нием петли кривой х = /2, у
(/2— 3) вокруг оси Ох.
При у — 0 находим t = 0 и t = ±>/ 3 . Следовательно, X1 = 0 и X2 -= 3* т. е. кривая пересекает ось Ox в двух точках О (0, 0) и А (3, 0).
При х = 0 находим / = 0, следовательно, у = 0. Мы получили ту же точку О (0, 0).
При люб dx вещественных значениях параметра / будут вещественны х и у Так как х — четная функция параметра /, у — нечетная функция параметра /, то график расположен симметрично относительно оси Ох.
Исследуем данную функцию на экстремум. Находим производную:
Легко видеть, что у = 0 при / = + I и, следовательно^
у — + —; когда X= I; у’-* оо, когда / —> 0, следовательно,
когда х -> 0, то и у 0. Это значит, что в начале координат касательная к данной кривой вертикальна. В точке
А (3; 0) будет у’ = — J=, это значит, что касательная У з
к данной кривой в этой точке образует с положительным направлением оси Ox угол в 30°.
Полученных данных достаточно для построения графика данной функции (рис. 22).
Найдем площадь данной поверхности. Имеем: х’ = 21, y’ = f — I; х’% -(-y’z = (I +12 )а.
Р=2* Jyj/T^T |±( —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.
539. Найти поверхность, полученную вращением кардиоиды Вокруг полярной оси.
540. Найти площадь поверхности, образованной вращением лемнискаты Вокруг полярной оси.
Дополнительные задачи к главе IV
Площади плоских фигур
541. Найтивсю площадь области, ограниченной кривой И осью Ох.
542. Найти площадь области, ограниченной кривой
543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой
л осями координат.
544. Найти площадь области, содержащейся внутри
545. Найти площадь области, ограниченной одной петлей кривой:
546. Найти площадь области, содержащейся внутри петли:
547. Найти площадь области, ограниченной кривой
548. Найти площадь области, ограниченной кривой
549. Найти площадь области, ограниченной осью Oxr
прямой И кривой
550. Найти площадь области, ограниченной кривыми.
Вычисление длины дуги
551. Найти длину дуги кривой От точки А(0: до точки В (I: 6).
552. Найти длину дуги CD кривой , где
Дать геометрическую иллюстрацию.
553. Найти длину дуги OA кривой Где
554. Найти длину дуги AB кривой у = еху где А (0; I), В (I; 2)
555. Нгйти длину дуги AB кривой , где
556. Нгйти длину дуги кривой , отсеченной прямей X = — I.
557. Нгйти длину дуги кривой От
Объем тела вращения
558. Нгйти объем тела, полученного вращением вокруг юси Ox п/ощоди, сграниченной крквой
559. Нййти объем тела, полученного от вращения рокруг сси Ox площади, ограниченной кривой
560. Найти объем тела, образованного вращением вокруг оси Oy площади, ограниченной кривой
561. Найти объем тела, образованного вращением вокруг оси Oy площади, ограниченней эллипсом
562. Нгйти объем тела, полученного вращением вокруг оси Oy плещади, ограниченной кривой
И отрезком оси Oy.
563. Найти объем тела, полученного вращением вокруг оси Ox площади, ограниченной кривой
564. Круг радиуса 2 с центром в точке (7; 0) вращается вокруг оси Oy. Определить объем полученного тела вращения.
565. Нлйти объем тела, полученного вращением вокруг оси Ox площади, расположенной в первом квадранте и
ограниченной кривой (эволюта
Площадь поверхности вращения
566. Найти площадь поверхности, образованной вращением дуги кривой , отсеченной прямой
567. Найти площадь поверхности шаоовой чаши, полученной при вращении круга Вокруг оси Ox в пределах от 0 до h.
568. Найти площадь поверхности катеноида, образованного вращением вокруг оси абсцисс цепной линии
От точки До точки
569. Найти площадь поверхности эллипсоида, образованного вращением эллипса Вокруг оси Oy.
570. Найти площадь поверхности, образованной вращением вокруг оси Ox петли кривой
571. Найти площадь поверхности, образованной вращением вокруг оси Ox кривой
572. Найти площадь поверхности, образованной вращением Вокруг полярной оси.
Видео:Площадь эллипсоида + вывод формулы площади поверхности вращенияСкачать
Как найти площадь поверхности вращения с помощью интеграла
Прежде чем перейти к формулам площади поверхности вращения, дадим краткую формулировку самой поверхности вращения. Поверхность вращения, или, что то же самое — поверхность тела вращения — пространственная фигура, образованная вращением отрезка AB кривой вокруг оси Ox (рисунок ниже).
Представим себе криволинейную трапецию, ограниченную сверху упомянутым отрезком кривой. Тело, образованное вращением этой трапеции вокруг то же оси Ox, и есть тело вращения. А площадь поверхности вращения или поверхности тела вращения — это его внешняя оболочка, не считая кругов, образованных вращением вокруг оси прямых x = a и x = b .
Заметим, что тело вращения и соответственно его поверхность могут быть образованы также вращением фигуры не вокруг оси Ox, а вокруг оси Oy.
Видео:Площадь поверхности вращенияСкачать
Вычисление площади поверхности вращения, заданной в прямоугольных координатах
Пусть в прямоугольных координатах на плоскости уравнением y = f(x) задана кривая, вращением которой вокруг координатной оси образовано тело вращения.
Формула для вычисления площади поверхности вращения следующая:
(1).
Пример 1. Найти площадь поверхности параболоида, образованную вращением вокруг оси Ox дуги параболы , соответствующей изменению x от x = 0 до x = a .
Решение. Выразим явно функцию, которая задаёт дугу параболы:
Найдём производную этой функции:
Прежде чем воспользоваться формулу для нахождения площади поверхности вращения, напишем ту часть её подынтегрального выражения, которая представляет собой корень и подставим туда найденную только что производную:
Далее по формуле (1) находим:
Ответ: длина дуги кривой равна
.
Пример 2. Найти площадь поверхности, образуемой вращением вокруг оси Ox астроиды .
Решение. Достаточно вычислить площадь поверхности, получающейся от вращения одной ветви астроиды, расположенной в первой четверти, и умножить её на 2. Из уравнения астроиды выразим явно функцию, которую нам нужно будет подставить в формулу для нахождения площади повержности вращения:
.
Производим интегрирование от 0 до a:
Ответ: площадь поверхности вращения равна .
Видео:1712. Площадь поверхности вращения.Скачать
Вычисление площади поверхности вращения, заданной параметрически
Рассмотрим случай, когда кривая, образующая поверхность вращения, задана параметрическими уравнениями
Тогда площадь поверхности вращения вычисляется по формуле
(2).
Пример 3. Найти площадь поверхности вращения, образованной вращением вокруг оси Oy фигуры, ограниченной циклоидой и прямой y = a . Циклоида задана параметрическими уравнениями
Решение. Найдём точки пересечения циклоиды и прямой. Приравнивая уравнение циклоиды и уравнение прямой y = a , найдём
Из этого следует, что границы интегрирования соответствуют
Теперь можем применить формулу (2). Найдём производные:
Запишем подкоренное выражение в формуле, подставляя найденные производные:
Найдём корень из этого выражения:
.
Подставим найденное в формулу (2):
.
И, наконец, находим
В преобразовании выражений были использованы тригонометрические формулы
Ответ: площадь поверхности вращения равна .
Видео:Площадь эллипсаСкачать
Вычисление площади поверхности вращения, заданной в полярных координатах
Пусть кривая, вращением которой образована поверхность, задана в полярных координатах:
Площадь поверхности вращения вычисляется по формуле:
(3).
Пример 4. Найти площадь поверхности, образованной вращением лемнискаты вокруг полярной оси.
Решение. Действительные значения для ρ получаются при , то есть при (правая ветвь лемнискаты) или при (левая ветвь лемнискаты).
Решение. Дифференциал корня из формулы площади поверхности вращения равен:
В свою очередь произведение функции, которой задана лемниската, на синус угла равно
.
Поэтому площадь поверхности вращения найдём следующим образом:
.
Видео:Нахождение площади поверхности вращения телаСкачать
Эллипсоиды
Видео:§64 Поверхности вращенияСкачать
Определение эллипсоида
Эллипсоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением
где — положительные параметры, удовлетворяющие неравенствам .
Если точка принадлежит эллипсоиду (4.46), то координаты точек при любом выборе знаков также удовлетворяют уравнению (4.46). Поэтому эллипсоид (4.46) симметричен относительно координатных плоскостей, координатных осей и начала координат. Начало координат называют центром эллипсоида (4.46). Шесть точек пересечения эллипсоида с координатными осями называются его вершинами, а три отрезка координатных осей, соединяющих вершины, — осями эллипсоида. Оси эллипсоида, принадлежащие координатным осям , имеют длины соответственно. Если b>c» png;base64,iVBORw0KGgoAAAANSUhEUgAAAFEAAAAQBAMAAACcpY7MAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAEacB0WkhgcA75ZFRKK9ZmAAAARhJREFUKM9jYKAEJHUQq1L0igGRKhlv45dXg7N47oAppgRcruuE2cl9EUyxaUxGs2vHtgCI0h6oUhPXpgkQpYdhiiKaBBgYZgWfvQw11RWiVPaq6UKIqSrBEBkRNakNDIyLGLicoTrFIUrPBnBehdpXAlbK6GJQW8DAfodBdgPMEvHlIHKvgOV1mNOqCkAOv8MgycBgtZjh7AF4SLqDSBcG9qswlSEglVZg58k2A82A2w5iMV9i4LgGsz0QRNk2gMkCBi8msFcZ0l2ZQe5kvs6QqwDxUUmAMVgNkJvAwKLAekkExevM2gwqAiheN3JgEApg4FytuksHNeRn7VJEDXnGjiJNkIABGyjaGDURkTERTApNQMQOUAQACxo8dxA2UAQAAAAASUVORK5CYII=» />, то число называется большой полуосью, число — средней полуосью, число — малой полуосью эллипсоида. Если полуоси не удовлетворяют условиям , то уравнение (4.46) не является каноническим. Однако при помощи переименования неизвестных можно всегда добиться выполнения неравенств .
Видео:Площадь поверхности вращения.Скачать
Плоские сечения эллипсоида
Подставляя в уравнение (4.46), получаем уравнение линии пересечения эллипсоида с координатной плоскостью . Это уравнение в плоскости определяет эллипс Линии пересечения эллипсоида с другими координатными плоскостями также являются эллипсами. Они называются главными сечениями (главными эллипсами) эллипсоида.
Рассмотрим теперь сечение эллипсоида плоскостью, параллельной какой-нибудь координатной плоскости, например . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.46), получаем
При c» png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAg0KoBP0QXdEhwHEx4v6hyb4AAADaSURBVCjPY2DAD/ZAae4D2GSFGBiqlgNpRgUcsofD8ckyh+GT5W2Ay1piyk4VgMtOXoQhW1q9WAFm8uTlMAn2VWZgWdMm5gtweye3Q2i25mkXwbJXJzDGIFyVCJHOaGAMBMlyBjIwByC5OfEiiBQtYFMAybKHM7AaIMmmN4LIUKirgN49ugHJ5O4EEBUFleVtYBHNMYDJToS6KpiBgRMkmyrAsIL5AMxHUEkGCwY2c5CsqgLDXnOM0MhaaAx2FQ/QjASILJsRIpiSEiBhBQY4Y4Fs2U2wlINFFgCrpSqpbSiUhgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> уравнение не имеет действительных решений (правая часть уравнения отрицательная, а левая неотрицательная), т.е. плоскость не пересекает эллипсоид. При уравнение (4.47) имеет нулевое решение . Следовательно, плоскости касаются эллипсоида в его вершинах . При , разделив обе части уравнения (4.47) на 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAGMAAAAwBAMAAAD3D9n/AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAmv2BWBABQTDA2LEhcNbL+n8AAAGvSURBVEjHY2CgJughWUeg9VRStQgyrCZVixCDFAmqWcvB1G4StDhpgUgODVJsUQSRUQ0kaGFRAenbwUKCFkYdIMHtXkiClqxlxwMYhJQUSdASNFtag6G9vIaUEFvKpkhqLDawKpOmg21VAjjMSIsWRlXStACtSNrgSpIWYLQ4uS0jSQvnAganQgd8KngC0AQSHRiYp2BXGw5OdxlGBeghlobLdObFO4Hms2lOKiA69J0CGEF+TDAioIXlKpy5moEdHGGEtKR5mUJZHMrQrERIC1ualwzUPmWgP4jRwsDGVgnRwwzSkkCMFiCo3A7TooSwxdkYBEDBHigIB8JwPYUzoFq0EojVcnAGzC9EO2w6SGWGMgOPNlHeZ4B5n00bGi9CDoS0wAKZwSiAcSlQp5KS0gRs6i7CI93LBp4tlgg1gGMqAZuOxFYpaApPMUWINuPLeUwXgqAOZksgMtUmNjBdILkaczpAqg7WJaSpb29g4G4gSUfn5I0MEhyk+IVDmU0pcbNlAQlaghaw7T05cyYp3r9EevBOaiBdSwLJWoQSGKJJ1BIl2ruCRC2p1iJ4ZAESoVYyhvDZkwAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />, получаем уравнение эллипса полуосями . Следовательно, сечение эллипсоида плоскостью при представляет собой эллипс.
Плоские сечения дают возможность составить полное представление о виде эллипсоида (рис.4.40,а).
Видео:Найти площадь эллипсаСкачать
Эллипсоиды вращения
Эллипсоид, у которого две полуоси равны, называется эллипсоидом вращения (или сфероидом ). Такой эллипсоид является поверхностью вращения. Например, если , то линии (4.47) при являются окружностями. Следовательно, сечения эллипсоида плоскостями представляют собой окружности с центрами на оси аппликат. Такую поверхность можно получить, вращая вокруг оси эллипс заданный в плоскости (рис.4.41,а).
Если , то все сечения эллипсоида (4.46) плоскостями при эллипс (рис.4.41,б).
Если все полуоси эллипсоида равны , то он представляет собой сферу радиуса , которую можно получить, например, вращая окружность такого же радиуса вокруг любого диаметра.
Эллипсоид, у которого полуоси попарно различны b>c)» png;base64,iVBORw0KGgoAAAANSUhEUgAAAGAAAAAWBAMAAADNzYTXAAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAAXynYREhwNFB6DGRUQyCkmkAAAGUSURBVDjLY2AgHbBcIFYlkwOYcsYm51yCTRQsyLYUm9T2t9hEoxKABLsCNimep9hEmQ2AxL4AhG8c4EyJRjDlIoCige0ZkDiBJOahCmPFHYAY0RSArIFxEZCoAWJO49sJYAG4jnvKRWBaBK6D29ySgcEYqOYRkGO1tQ7iE0YPM4j0ubYoiIhIcwJEROuilgADEDE+AVr8ksEPFhnTwToYuwLYF0IEJIvBOljeMr5iYNQTYGB9CQytBoZzCTBnTrcGkqxvGNgfMsB0bACSeY0M2xgY/CAa/BQYuuAem1wNJHjfMsgtgApwmoM06IFd6Adx0rkJrI9h6qdbghPBM4Z5BlD1xRNAlB2YBDoJ5Gm9AN4nyRAHXYd4WughzJGyEC+AlLIxMGpBgvVeQsRLFUhEQAOJ+yn3E0hEwAJp3gVGjQAGcyBLQ4CBp8dycQFqxJ2wuIAacSxrjitAIi4PKBTKIAl2OVw9A+tGMKWEiGhpoAjbayBDWIH4rMMDcgfnUuI1gJM39gyEFTCaQDIe0VkUKfkTDwAVFViuYeRgnwAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />, называется трехосным (или общим).
1. Плоскости определяют в пространстве основной прямоугольный параллелепипед , внутри которого находится эллипсоид (см. рис.4.40,б). Грани параллелепипеда касаются эллипсоида в его вершинах.
2. Эллипсоид можно определить, как геометрическое место точек, получаемое в результате трех сжатий (растяжений) сферы единичного радиуса к трем взаимно перпендикулярным плоскостям.
3. Начало канонической системы координат является центром симметрии эллипсоида, координатные оси — осями симметрии эллипсоида, координатные плоскости — плоскостями симметрии эллипсоида.
В самом деле, если точка принадлежит эллипсоиду, то точки с координатами при любом выборе знаков также принадлежат эллипсоиду, поскольку их координаты удовлетворяют уравнению (4.46).
🌟 Видео
Площадь эллипсаСкачать
Площадь эллипса без интегралаСкачать
Длина эллипса и разложение в ряд для эллиптического интегралаСкачать
Как найти площадь эллипса, или почему современные дети не умеют думатьСкачать
ЭллипсСкачать
Лекция 10. Поверхности вращенияСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Площадь эллипсаСкачать
12. Поверхности вращенияСкачать
1626 Пощадь эллипсаСкачать
Катящийся эллипсСкачать