площадь поперечного сечения артериол

Видео:6. Определение характеристик сечения ( практический курс по сопромату )Скачать

6. Определение характеристик сечения ( практический курс по сопромату )

Основы строения сосудистой сети

Кровь, которая изгоняется в аорту левым сердцем, последовательно протекает через множество различного типа сосудов, прежде чем она возвращается в правое сердце. Как показано на рис. 7-1, основными видами сосудов являются артерии, ар- териолы, капилляры, венулы и вены. Эти последовательно расположенные сосудис­тые отделы, отличаются друг от друга физическими размерами, морфологическими характеристиками и функциями. Существует один общий признаку всех сосудов — это то, что все они выстланы одним слоем эндотелиальных клеток, прилегающих друг к другу Фактически, это характерно для всей системы кровообращения, включая ка­ меры сердца и даже створки клапанов.

Некоторые типичные физические характеристики основных видов сосудов пред­ ставлены на рис 7-1. Однако следует понять, что сосудистое русло представляет собой нечто единое и что переход от одного типа сосудов к другому не имеет резкой границы Общая площадь поперечного сечения, через которое кровь протекает на каждом конкретном уровне сосудистой системы, равняется сумме площадей попереч­ных сечений отдельных сосудов, которые расположены параллельно на данном уров­не. Количество сосудов и общая площадь их поперечного сечения, представленные на рис. 7-1, характеризуют весь большой круг кровообращения.

Артерии представляют собой сосуды с толстой стенкой, содержащей, помимо глад­ кой мускулатуры, значительное количество эластических и коллагеновых волокон. Прежде всего, благодаря наличию эластических волокон, которые могут растягивать­ ся в два раза по сравнению со своей длиной без нагрузки, артерии способны расши­ ряться, принимая и временно депонируя некоторое количество крови, выбрасываемой сердцем во врелЦ^истолы, а затем за счет пассивного эластического напряжения снаб­ жать этой кр^^^^ктально расположенные органы во время диастолы. Аорта пред-

площадь поперечного сечения артериол

ставляет собой самую крупную артерию, и ее внутренний диаметр составляет около 25 мм По мере отделения каждой новой ветви диаметр артерий уменьшается, и диаметр самых мелких артерий составляет около 0,1 мм Последовательное разделение арте­ рий на ветви ведет к экспоненциальному росту числа артерий

.Таким образом, хотя отдельные ветви становятся постепенно все меньше и мень­ ше, общая площадь поперечного сечения, через которое осуществляется кровоток в системе артерии, увеличивается в несколько раз по сравнению с диаметром аорты

Артериолы меньше по диаметру, чем артерии и имеют несколько иное строение У артериол по отношению к внутреннему диаметру более толстые стенки с большим количеством гладкой мускулатуры и меньшим количеством эластических тканей, чем в артериях Так как стенки артериол столь богаты мышечной тканью, их диаметр мо­ жет активно изменяться, регулируя кровоток через периферические органы Несмот­ ря на свой столь малый размер, артериолы столь многочисленны, что их общее попе­ речное сечение столь велико, что значительно превышает соответствующий показатель у артерий на любом уровне

Капилляры являются самыми малыми сосудами Фактически эритроциты с диа­ метром 7 мкм должны деформироваться, чтобы пройти через них Как уже обсужда-

лось в главе 1, стенка капилляров состоит из одного слоя эндотелиальных клеток, отделяющих кровь от интерстициальной жидкости слоем, толщиной в 1 мкм В стенке капилляров нет гладкой мускулатуры и поэтому они лишены способности активно изменять свой диаметр Капилляры столь многочисленны, что площадь их общего по­перечного сечения в системных органах более чем в S 000 раз превышает диаметр кор­ ня аорты Если считать, что капилляры обладают средней длиной 0,5 мм, мы можем вычислить, что общая площадь поверхности, доступная для обмена веществ между кровью и интерстициальной жидкостью, составляет более 100 м 2

После прохождения капилляров, кровьсобирается в венулы и вены и возвращает­ ся в сердце Венозные сосуды обладают очень тонкими стенками по сравнению с их диаметром В их стенке содержатся гладкие мышцы, и поэтому их диаметр может ак­ тивно изменяться Благодаря тонким стенкам, венозные сосуды очень растяжимы Поэтому диаметр их меняется пассивно при небольших изменениях величины транс- мурал ьного давления, которое представляет собой разность между наружным и внут­ ренним давлением на стенку сосуда Венозные сосуды, в особенности крупные, также обладают клапанами, которые препятствуют обратному току крови Как мы увидим позднее, эти клапаны играют особенно важную роль в функционировании сердечно­ сосудистой системы в вертикальном положении и при физической нагрузке

Видео:Определение центра тяжести сложных сечений. Фигуры из ГОСТ.Скачать

Определение центра тяжести сложных сечений. Фигуры из ГОСТ.

Площадь поперечного сечения артериол

Как показано на рисунке, вся система кровообращения делится на системное кровообращение и легочное кровообращение. Поскольку системное кровообращение снабжает кровью все ткани организма, кроме легких, его называют также большим, или периферическим, кругом кровообращения.

Функциональные участки системы кровообращения. Прежде чем приступить к обсуждению функций системы кровообращения, очень важно понять функциональное значение отдельных ее участков.

Функцией артерий является подача крови к тканям под большим давлением. Поскольку кровь течет в артериях с большой скоростью, артерии имеют прочную сосудистую стенку.

Артериолы являются мелкими концевыми ветвями артериального русла и контролируют поступление крови в капилляры. Артериолы имеют сравнительно толстую гладкомышечную стенку, при сокращении которой просвет артериол может полностью закрываться. При расслаблении артериол их просвет увеличивается в несколько раз, что позволяет существенно увеличить объем крови, поступающей в сосудистое русло различных тканей в соответствии с их потребностями.

Функцией капилляров является осуществление обмена воды, питательных веществ, электролитов, гормонов и других веществ между кровью и тканевой жидкостью, поэтому стенка капилляров тонкая, имеет множество капиллярных пор, проницаемых для воды и других низкомолекулярных веществ.

Венулы собирают кровь из капилляров и, сливаясь, образуют более крупные венозные сосуды. По венам кровь направляется к сердцу. Вены — емкий резервуар, куда вмещается дополнительный объем крови. Стенка вен тонкая, поскольку давление в венозных сосудах очень низкое, однако в ней достаточно мышечных элементов, чтобы сокращаться или расслабляться. Итак, вены представляют собой контролируемую емкость, способную вмещать больший или меньший объем крови в зависимости от потребностей системы кровообращения.

площадь поперечного сечения артериолРаспределение крови (% общего объема) в различных отделах сердечно-сосудистой системы

Объем крови в различных участках сосудистой системы. На рисунке представлена схема сердечно-сосудистой системы и указано, какая часть общего объема крови находится в том или ином участке системы кровообращения. Например, около 84% общего объема крови находится в большом круге кровообращения, а 16% — в сердце и легких. Из того объема крови, который находится в большом круге кровообращения, 64% находится в венах, 13% — в артериях и 7% — в артериолах и капиллярах. Сердце вмещает 7%, легкие — 9% общего объема крови.

Больше всего удивляет факт, что в капиллярах находится так мало крови. Ведь именно в капиллярах осуществляется наиболее важная функция сосудистой системы — диффузия и обмен веществ между кровью и тканями.

Площадь поперечного сечения и скорость кровотока. Если сосуды большого круга кровообращения расположить параллельно друг другу и определить суммарную площадь поперечного сечения сосудов каждого типа, то получим следующую картину:

площадь поперечного сечения артериол

Площадь поперечного сечения вен почти в 4 раза больше, чем площадь поперечного сечения соответствующих артерий, поэтому венозная система вмещает больший объем крови, чем артериальная система.

Скорость движения крови находится в обратной зависимости от суммарной площади поперечного сечения сосудов, поскольку один и тот же объем крови должен протекать через каждый участок сосудистой системы за минуту. Так, в состоянии покоя скорость движения крови в аорте в среднем равна 33 см/сек, тогда как в капиллярах она составляет всего 1/1000 скорости движения крови в аорте, т.е. около 0,3 мм/сек. Однако кровь находится в капилляре в течение 1-3 сек, поскольку длина капилляра только 0,3-1 мм. Удивительно, что за такое короткое время через стенку капилляра успевает произойти диффузия питательных веществ и электролитов.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Видео:Основы Сопромата. Геометрические характеристики поперечного сеченияСкачать

Основы Сопромата. Геометрические характеристики поперечного сечения

ФИЗИОЛОГИЯ СОСУДИСТОЙ СИСТЕМЫ.

ОСНОВНЫЕ ПРИНЦИПЫ ГЕМОДИНАМИКИ»

1. Функциональная классификация кровеносных и лимфатических сосудов (структурно-функциональная характеристика сосудистой системы.

2. Основные законы гемодинамики.

3. Кровяное давление, его виды (систолическое, диастолическое, пульсовое, среднее, центральное и периферическое, артериальное и венозное). Факторы, определяющие кровяное давление.

4. Методы измерения кровяного давления в эксперименте и в клинике (прямой, Н.С. Короткова, Рива-Роччи, артериальная осциллография, измерение венозного давления по Вельдману).

Сердечно-сосудистая система состоит из сердца и сосудов – артерий, капилляров, вен. Сосудистая система представляет собой систему трубок, по которым через посредство циркулирующих в них жидкостей (кровь и лимфа), совершается доставка к клеткам и тканям организма необходимых для них питательных веществ, а также происходит удаление продуктов жизнедеятельности клеточных элементов и перенесение этих продуктов к экскреторным органам (почкам).

По характеру циркулирующей жидкости сосудистую систему человека можно разделить на два отдела: 1) кровеносную систему – систему трубок, по которым циркулирует кровь (артерии, вены, отделы микроциркуляторного русла и сердце); 2) лимфатическую систему – систему трубок, по которым движется бесцветная жидкость – лимфа. В артериях кровь течет от сердца на периферию, к органам и тканям, в венах – к сердцу. Движение жидкости в лимфатических сосудах происходит так же, как и в венах – в направлении от тканей – к центру. Однако: 1) растворенные вещества всасываются главным образом кровеносными сосудами, твердые – лимфатическими; 2) всасывание через кровь происходит значительно быстрее. В клинике всю систему сосудов называют сердечно-сосудистой, в которой выделяют сердце и сосуды.

Артерии – кровеносные сосуды, идущие от сердца к органам и несущие к ним кровь (aer – воздух, tereo – содержу; на трупах артерии пусты, отчего в старину их считали воздухоносными путями). Стенка артерий состоит из трёх оболочек. Внутренняя оболочка выстлана со стороны просвета сосуда эндотелием, под которым лежат субэндотелиальный слой и внутренняя эластическая мембрана. Средняя оболочка построена из гладкомышечных волокон, чередующихся с эластическими волокнами. Наружная оболочка содержит соединительнотканные волокна. Эластические элементы артериальной стенки образуют единый эластический каскад, работающий как пружина и обуславливающий эластичность артерий.

По мере удаления от сердца артерии делятся на ветви и становятся всё мельче и мельче, происходит и их функциональная дифференцировка.

Артерии, ближайшие к сердцу – аорта и ее крупные ветви – выполняют функцию проведения крови. В их стенке относительно больше развиты структуры механического характера, т.е. эластические волокна, так как их стенка постоянно противодействует растяжению массой крови, которая выбрасывается сердечным толчком – это артерии эластического типа. В них движение крови обусловлено кинетической энергией сердечного выброса.

Средние и мелкие артерии – артерии мышечного типа, что связано с необходимостью собственного сокращения сосудистой стенки, так как в этих сосудах инерция сосудистого толчка ослабевает и мышечное сокращение их стенки необходимо для дальнейшего продвижения крови.

Последние разветвления артерий становятся тонкими и мелкими – это артериолы. Они отличаются от артерий тем, что стенка артериолы имеет лишь один слой мышечных клеток, поэтому они относятся к резистивным артериям, активно участвующим в регуляции периферического сопротивления и, следовательно, в регуляции артериального давления.

Артериолы продолжаются в капилляры через стадию прекапилляров. От прекапилляров отходят капилляры.

Капилляры – это тончайшие сосуды, в которых происходит обменная функция. В связи с этим их стенка состоит из одного слоя плоских эндотелиальных клеток, проницаемых для растворенных в жидкости веществ и газов. Капилляры широко анастамозируют между собой (капиллярные сети), переходят в посткапилляры (построенные также, как и прекапилляры). Посткапилляр продолжается в венулу.

Венулы сопровождают артериолы, образуют тонкие начальные отрезки венозного русла, составляющие корни вен и переходящие в вены.

Вены – (лат. vena, греч phlebos) несут кровь в противоположном по отношению к артериям направлении, от органов – к сердцу. Стенки имеют общий план строения с артериями, но значительно тоньше и в них меньше эластической и мышечной ткани, благодаря чему пустые вены спадаются, просвет же артерий – нет. Вены, сливаясь друг с другом, образуют крупные венозные стволы – вены, впадающие в сердце. Вены образуют между собой венозные сплетения.

Движение крови по венам осуществляется в результате действия следующих факторов.

1) Присасывающее действие сердца и грудной полости (в ней во время вдоха создается отрицательное давление).

2) Благодаря сокращению скелетной и висцераьной мускулатуры.

3) Сокращение мышечной оболочки вен, которая в венах нижней половины тела, где условия для венозного оттока сложнее, развита сильнее, чем в венах верхней части тела.

4) Обратному оттоку венозной крови препятствуют особые клапаны вен – это складка эндотелия, содержащая слой соединительной ткани. Они обращены свободным краем в сторону сердца и поэтому препятствуют току крови в этом направлении, но удерживают ее от возвращения обратно. Артерии и вены обычно идут вместе, причем мелкие и средние артерии сопровождаются двумя венами, а крупные – одной.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА человека состоит из двух последовательно соединенных отделов:

1. Большой (системный) круг кровообращения начинается с левого желудочка, выбрасывающего кровь в аорту. От аорты отходят многочисленные артерии, и в результате кровоток распределяется по нескольким параллельным регионарным сосудистым сетям (регионарное, или органное кровообращение): коронарное, мозговое, легочное, почечное, печеночное и т.д. Артерии ветвятся дихотомически, и поэтому по мере уменьшения диаметра отдельных сосудов общее их число возрастает. В результате образуется капиллярная сеть, общая площадь поверхности которой – около 1000 м 2 . При слиянии капилляров образуются венулы (см. выше) и т.д. Такому общему правилу строения венозного русла большого круга кровообращения не подчиняется кровообращение в некоторых органах брюшной полости: кровь, оттекающая от капиллярных сетей брыжеечных и селезеночных сосудов (т.е. от кишечника и селезенки), в печени происходит еще через одну систему капилляров, и лишь затем поступает к сердцу. Это русло называется портальным кровообращением.

2. Малый круг кровообращения начинается с правого желудочка, выбрасывающего кровь в легочной ствол. Затем кровь поступает в сосудистую систему легких, имеющих общую схему строения, что и большой круг кровообращения. Кровь по четырем крупным легочным венам оттекает к левому предсердию, а затем поступает в левый желудочек. В результате оба круга кровообращения замыкаются.

Историческая справка. Открытие замкнутой кровеносной системы принадлежит английскому врачу Уильяму Гарвею (1578-1657). В своем знаменитом труде «О движении сердца и крови у животных», опубликованном в 1628 г., он с безупречной логикой опроверг господствовавшую доктрину своего времени, принадлежащую Галену, который считал, что кровь образуется из пищевых веществ в печени, притекает к сердцу по полой вене и затем по венам поступает к органам и используется ими.

Существует принципиальное функциональное различие между обоими кругами кровообращения. Оно заключается в том, что объем крови, выбрасываемый в большой круг кровообращения, длжен быть распределен по всем органам и тканям; потребности же разных органов в кровоснабжении различны даже для состояния покоя и постоянно изменяются в зависимости от деятельности органов. Все эти изменения контролируются, и кровоснабжение органов большого круга кровообращения имеет сложные механизмы регуляции. Малый круг кровообращения: сосуды легких (через них проходит то же количество крови) предъявляют к работе сердца постоянные требования и выполняют в основном функцию газообмена и теплоотдачи. Поэтому для регуляции легочного кровотока требуется менее сложная система регуляции.

ФУНКЦИОНАЛЬНАЯ ДИФФЕРЕНЦИРОВКА СОСУДИСТОГО РУСЛА И ОСОБЕННОСТИ ГЕМОДИНАМИКИ.

Все сосуды в зависимости от выполняемой ими функции можно подразделить на шесть функциональных групп:

1) амортизирующие сосуды,

2) резистивные сосуды,

4) обменные сосуды,

5) емкостные сосуды,

6) шунтирующие сосуды.

Амортизирующие сосуды: артерии эластического типа с относительно большим содержанием эластических волокон. Это – аорта, легочная артерия, прилегающие к ним участки артерий. Выраженные эластические свойства таких сосудов обуславливают амортизирующий эффект «компрессионной камеры». Этот эффект заключается в амортизации (сглаживании) периодических систолических волн кровотока.

Резистивные сосуды. К сосудам этого типа относятся концевые артерии, артериолы, в меньшей степени – капилляры и венулы. Артерии концевые и артериолы – это прекапиллярные сосуды, обладающие относительно малым просветом и толстыми стенками, с развитой гладкомышечной мускулатурой, оказывают наибольшее сопротивление кровотоку: изменение степени сокращения мышечных стенок этих сосудов сопровождается отчетливыми изменениями их диаметра и, следовательно, общей площади поперечного сечения. Это обстоятельство является основным в механизме регуляции объемной скорости кровотока в различных областях сосудистого русла, а также перераспределения сердечного выброса по разным органам. Описанные сосуды являются прекапиллярными сосудами сопротивления. Посткапиллярные сосуды сопротивления – это венулы и, в меньшей степени – вены. Соотношение между прекапиллярным и посткапиллярным сопротивлением влияет на величину гидростатического давления в капиллярах – и, следовательно, на скорость фильтрации.

Сосуды-сфинктеры – это последние отделы прекапиллярных артериол. От сужения и расширения сфинктеров зависит число функционирующих капилляров, т.е. площадь обменных поверхностей.

Обменные сосуды – капилляры. В них происходит диффузия и фильтрация. Капилляры не способны к сокращениям: их просвет изменяется пассивно вслед за колебаниями давления в пре- и посткапиллярах (резистивных сосудов).

Емкостные сосуды – это главным образом вены. Благодаря своей высокой растяжимости вены способны вмещать или выбрасывать большие объемы крови без существенных изменение каких-либо параметров кровотока. В связи с этим они могут играть роль как депо крови. В замкнутой сосудистой системе изменения емкости какого-либо отдела обязательно сопровождается перераспределением объема крови. Поэтому изменение емкости вен, наступающие при сокращении гладких мышц, влияют на распределение крови во всей кровеносной системе и тем самым – прямо или косвенно – на общие параметры кровообращения. Кроме того, некоторые вены (поверхностные) при низком внутрисосудистом давлении уплощены (т.е. имеют овальный просвет), и поэтому они могут вмещать некоторый дополнительный объем, не растягиваясь, а лишь приобретая цилиндрическую форму. Это главный фактор, обуславливающий высокую эффективную растяжимость вен. Основные депо крови: 1) вены печени, 2) крупные вены чревной области, 3) вены подсосочкового сплетения кожи (общий объем этих вен может увеличиваться на 1 л по сравнению с минимальным), 4) легочные вены, соединенные с системным кровообращением параллельно, обеспечивающие кратковременное депонирование или выброс достаточно больших количеств крови.

У человека, в отличие от других видов животных, нет истинного депо, в котором кровь могла бы задержаться в специальных образованиях и по мере необходимости выбрасываться (как, например, у собаки, селезенка).

ФИЗИЧЕСКИЕ ОСНОВЫ ГЕМОДИНАМИКИ.

Основными показателями гидродинамики являются:

1. Объемная скорость движения жидкости – Q.

2. Давление в сосудистой системе – Р.

3. Гидродинамическое сопротивление – R.

Соотношение между этими величинами описывается уравнением:

площадь поперечного сечения артериол

Т.е. количество жидкости Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале (Р1) и в конце (Р2) трубы и обратно пропорционально сопротивлению (R) току жидкости.

ОСНОВНЫЕ ЗАКОНЫ ГЕМОДИНАМИКИ

Наука, изучающая движение крови в сосудах, получила название гемодинамики. Она является частью гидродинамики, изучающей движение жидкостей.

площадь поперечного сечения артериол

Периферическое сопротивление R сосудистой системы передвижению крови в ней слагается из множества факторов каждого сосуда. Отсюда уместна формула Пуазеля:

площадь поперечного сечения артериол,

где l – длина сосуда, η – вязкость протекающей в ней жидкости, r – радиус сосуда.

Однако сосудистая система состоит из множества сосудов, соединенных и последовательно, и параллельно, отсюда суммарное сопротивление можно вычислить с учетом этих факторов:

При параллельном ветвлении сосудов (капиллярное русло)

площадь поперечного сечения артериол

При последовательном соединении сосудов (артериальном и венозном)

площадь поперечного сечения артериол

Поэтому R суммарное всегда меньше в капиллярном русле, чем в артериальном или венозном. С другой стороны, вязкость крови тоже величина непостоянная. Например, если кровь протекает через сосуды, диаметром менее 1 мм, вязкость крови уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей крови. Это связано с тем, что в крови наряду с эритроцитами и другими форменными элементами есть плазма. Пристеночный слой представляет собой плазму, вязкость которой намного меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Кроме этого, в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.

Распределение периферического сопротивления.

Сопротивление в аорте, больших артериях и относительно длинных артериальных ответвлениях составляет лишь около 19% от общего сосудистого сопротивления. На долю же конечных артерий и артериол приходится почти 50 % этого сопротивления. Таким образом, почти половина периферического сопротивления приходится на сосуды, длиной порядка всего насколько миллиметров. Это колоссальное сопротивление связано с тем, что диаметр концевых артерий и артериол относительно мал, и это уменьшение просвета полностью не компенсируется ростом числа параллельных сосудов. Сопротивление в капиллярном русле – 25 %, в венозном русле и в венулах – 4 % и во всех остальных венозных сосудах – 2 %.

Итак, артериолы играют двоякую роль: во-первых, участвуют в поддержании периферического сопротивления и через него в формировании необходимого системного артериального давления; во-вторых, за счет изменения сопротивления обеспечивают перераспределение крови в организме – в работающем органе сопротивление артериол снижается, приток крови к органу увеличивается, но величина общего периферического давления остается постоянной за счет сужения артериол других сосудистых областей. Это обеспечивает стабильный уровень системного артериального давления.

Линейная скорость кровотока выражается в см/с. Её можно рассчитать, зная количество крови, изгнанное сердцем в минуту (объемная скорость кровотока) и прощадь сечения кровеносного сосуда.

Линейная скорость V отражает скорость продвижения частиц крови вдоль сосуда и равна объемной скорости, деленной на суммарную площадь сечения сосудистого русла:

площадь поперечного сечения артериол

Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности же линейная скорость величина непостоянная, так как отражает движение частиц крови в центре потока вдоль сосудистой оси и у сосудистой стенки (ламинарное движение – слоистое: в центре движутся частицы – форменные элементы крови, а у стенки – слой плазмы). В центре сосуда скорость максимальная, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Изменение линейной скорости тока крови в разных частях сосудистой системы.

Самое узкое место в сосудистой системе – аорта. Её диаметр составляет 4 см 2 (имеется в виду суммарный просвет сосудов), здесь самое минимальное периферическое сопротивление и самая большая линейная скорость – 50 см/с.

По мере расширения русла скорость снижается. В артериолах самое «неблагополучное» отношение длины и диаметра, поэтому здесь самое большое сопротивление и наибольшее падение скорости. Но за счет этого при входе в капиллярное русло кровь имеет наименьшую скорость, необходимую для обменных процессов (0,3-0,5 мм/с). Этому способствует и фактор расширения (максимального) сосудистого русла на уровне капилляров (общая площадь их сечения – 3200 см 2 ). Суммарный просвет сосудистого русла является определяющим фактором в формировании скорости системного кровообращения.

Кровь оттекающая от органов, поступает через венулы в вены. Происходит укрупнение сосудов, параллельно суммарный просвет сосудов уменьшается. Поэтому линейная скорость кровотока в венах опять увеличивается (по сравнению с капиллярами). Линейная скорость – 10-15 см/с, а площадь поперечного сечения этой части сосудистого русла – 6-8 см 2 . В полых венах скорость кровотока – 20 см/с.

Таким образом, в аорте создается наибольшая линейная скорость движения артериальной крови к тканям, где при минимальной линейной скорости в микроциркуляторном русле происходят все обменные процессы, после чего по венам с увеличивающейся линейной скоростью уже венозная кровь поступает через «правое сердце» в малый круг кровообращения, где происходят процессы газообмена и оксигенации крови.

Механизм изменения линейной скорости кровотока.

Объем крови, протекающий в 1 мин через аорту и полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекающий в 1 мин через всю артериальную систему или все артериолы, через все капилляры или всю венозную систему как большого, так и малого круга кровообращения, одинаков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это следует из уравнения, выражающего соотношение линейной и объемной скорости: ЧЕМ БОЛЬШЕ ОБЩАЯ ПЛОЩАДЬ СЕЧЕНИЯ СОСУДОВ, ТЕМ МЕНЬШЕ ЛИНЕЙНАЯ СКОРОСТЬ КРОВОТОКА. В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то, что каждая ветвь сосуда ´уже той, от которой она произошла, наблюдается увеличение суммарного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярах большого круга кровообращения: сумма просветов всех капилляров примерно в 500-600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500-600 раз медленнее, чем в аорте.

В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте.

Влияние работы сердца на характер кровотока и его скорость.

В связи с тем, что кровь выбрасывается сердцем отдельными порциями

1. Кровоток в артериях имеет пульсирующий характер. Поэтому, линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы.

2. В капиллярах и венах кровоток постоянен, т.е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки: в сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. В результате в этих сосудах образуется эластическая, или компрессионная камера, в которую поступает значительный объем крови, растягивающий ее. При этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спадаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

Методика исследования линейной и объемной скорости кротока.

1. Ультразвуковой метод исследования – к артерии на небольшом расстоянии друг от друга прикладывают две пьезоэлектрические пластинки, которые способны преобразовывать механические колебания в электрические и обратно. Оно преобразуется в ультразвуковые колебания, которые передаются с кровью на вторую пластинку, воспринимаются ею и преобразуются в высокочастотные колебания. Определив, как быстро распространяются ультразвуковые колебания по току крови от первой пластинки ко второй и против тока крови в обратном направлении, рассчитывают скорость кровотока: чем быстрее ток крови, тем быстрее будут распространяться ультразвуковые колебания в одном направлении и медленнее – в противоположном.

Окклюзионная плетизмография (окклюзия – закупорка, зажатие) – метод, позволяющий определить объемную скорость регионарного кровотока. Метока состоит в регистрации изменений объема органа или части тела, зависящих от их кровенаполнения, т.е. от разности между притоком крови по артериям и оттоком ее по венам. Во время плетизмографии конечность или ее часть помещают в герметически закрывающийся сосуд, соединенный с манометром для измерения малых колебаний давления. При изменении кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления воздуха или воды в сосуде, в который помещают конечность: давление регистрируется манометром и записывается в виде кривой – плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови.

Величина кровотока в органах на 100 г массы

ОрганКровоток, мл/мин
Щитовидная железа
Почки
Печень
Сердце (через коронарные сосуды)
Кишечник
Мозг
Селезенка
Желудок
Мышцы рук и ног (в покое)2-3
|следующая лекция ==>
Характеристики артериального пульса|ФИЗИОЛОГИЯ СОСУДИСТОЙ СИСТЕМЫ. 1. Кровяное давление как основной показатель гемодинамики

Дата добавления: 2015-10-29 ; просмотров: 4323 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

💥 Видео

#Физика. Электричество. Поперечное сечение проводника fiz1.ruСкачать

#Физика. Электричество. Поперечное сечение проводника fiz1.ru

Как рассчитать площадь поперечного сечения многожильного провода. Начинающим электрикам.Скачать

Как рассчитать площадь поперечного сечения многожильного провода. Начинающим электрикам.

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

Биология 8 класс (Урок№18 - Движение крови по сосудам.)Скачать

Биология 8 класс (Урок№18 - Движение крови по сосудам.)

Артерии, артериолы, венулы и веныСкачать

Артерии, артериолы, венулы и вены

6.51. Диаметр сосудов, скорость и давление крови | Анатомия к ЕГЭ | Георгий МишуровскийСкачать

6.51. Диаметр сосудов, скорость и давление крови | Анатомия к ЕГЭ | Георгий Мишуровский

Артерии, вены, капилляры. Круги кровообращения. Болезни. Лекция и разбор заданий от Юрия БеллевичаСкачать

Артерии, вены, капилляры. Круги кровообращения. Болезни. Лекция и разбор заданий от Юрия Беллевича

Геометрические характеристики. Моменты инерции. Радиусы инерции. Сопромат.Скачать

Геометрические характеристики. Моменты инерции. Радиусы инерции. Сопромат.

Пример. Геометрические характеристики плоских сечений. Часть 1Скачать

Пример. Геометрические характеристики плоских сечений. Часть 1

Артерии, Вены, Капилляры ОГЭ. Разбор задания из пробника СтатградаСкачать

Артерии, Вены, Капилляры ОГЭ. Разбор задания из пробника Статграда

Физиология кровообращения: физиология давления, артериальное давление, пульс, гемодинамикаСкачать

Физиология кровообращения: физиология давления, артериальное давление, пульс, гемодинамика

Как определить сечение провода.Скачать

Как определить сечение провода.

Сосуды, артерии, вены, капиллярыСкачать

Сосуды, артерии, вены, капилляры

Гемодинамика. Часть 2.Скачать

Гемодинамика. Часть 2.

Закономерности строения артерий и венСкачать

Закономерности строения артерий и вен

Как определить сечение кабеля?Скачать

Как определить сечение кабеля?

Сосудистое сопротивление - физиология сердечно-сосудистой системы, гемодинамикаСкачать

Сосудистое сопротивление - физиология сердечно-сосудистой системы, гемодинамика
Поделиться или сохранить к себе: