- Вычисление площади фигуры, ограниченной параметрически заданной кривой
- Основная формула для вычисления
- Решение задач на вычисление площади фигуры, которая ограничена параметрически заданной кривой
- Вычислить площадь фигуры, ограниченной кривыми онлайн
- Презентация на тему: Интегральное исчисление. Нахождение площадей фигур в среде Mathcad
- 📹 Видео
Видео:Криволинейная трапеция и ее площадь. 11 класс.Скачать
Вычисление площади фигуры, ограниченной параметрически заданной кривой
Когда мы выясняли геометрический смысл определенного интеграла, у нас получилась формула, с помощью которой можно найти площадь криволинейной трапеции, ограниченной осью абсцисс, прямыми x = a , x = b , а также непрерывной (неотрицательной или неположительной) функцией y = f ( x ) . Иногда удобнее задавать функцию, ограничивающую фигуру, в параметрическом виде, т.е. выражать функциональную зависимость через параметр t . В рамках данного материала мы покажем, как можно найти площадь фигуры, если она ограничена параметрически заданной кривой.
После объяснения теории и выведения формулы мы разберем несколько характерных примеров на нахождение площади таких фигур.
Видео:Построение графиков: нахождение площади под кривойСкачать
Основная формула для вычисления
Допустим, что у нас имеется криволинейная трапеция, границами которой являются прямые x = a , x = b , ось O x и параметрически заданная кривая x = φ ( t ) y = ψ ( t ) , а функции x = φ ( t ) и y = ψ ( t ) являются непрерывными на интервале α ; β , α β , x = φ ( t ) будет непрерывно возрастать на нем и φ ( α ) = a , φ ( β ) = b .
Чтобы вычислить площадь трапеции при таких условиях, нужно использовать формулу S ( G ) = ∫ α β ψ ( t ) · φ ‘ ( t ) d t .
Мы вывели ее из формулы площади криволинейной трапеции S ( G ) = ∫ a b f ( x ) d x методом подстановки x = φ ( t ) y = ψ ( t ) :
S ( G ) = ∫ a b f ( x ) d x = ∫ α β ψ ( t ) d ( φ ( t ) ) = ∫ α β ψ ( t ) · φ ‘ ( t ) d t
Учитывая монотонное убывание функции x = φ ( t ) на интервале β ; α , β α , нужная формула принимает вид S ( G ) = — ∫ β α ψ ( t ) · φ ‘ ( t ) d t .
Если функция x = φ ( t ) не относится к основным элементарным, то нам понадобится вспомнить основные правила возрастания и убывания функции на интервале, чтобы определить, будет ли она возрастающей или убывающей.
Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать
Решение задач на вычисление площади фигуры, которая ограничена параметрически заданной кривой
В этом пункте мы разберем несколько задач на применение формулы, выведенной выше.
Условие: найдите площадь фигуры, которую образует линия, заданная уравнениями вида x = 2 cos t y = 3 sin t .
Решение
У нас есть параметрически заданная линия. Графически ее можно отобразить в виде эллипса с двумя полуосями 2 и 3 . См на иллюстрацию:
Попробуем найти площадь 1 4 полученной фигуры, которая занимает первый квадрант. Область находится в интервале x ∈ a ; b = 0 ; 2 . Далее умножим полученное значение на 4 и найдем площадь целой фигуры.
Вот ход наших вычислений:
x = φ ( t ) = 2 cos t y = ψ ( t ) = 3 sin t φ α = a ⇔ 2 cos α = 0 ⇔ α = π 2 + πk , k ∈ Z , φ β = b ⇔ 2 cos β = 2 ⇔ β = 2 πk , k ∈ Z
При k , равном 0 , мы получим интервал β ; α = 0 ; π 2 . Функция x = φ ( t ) = 2 cos t на нем будет монотонно убывать (подробнее см. статью об основных элементарных функциях и их свойствах). Значит, можно применить формулу вычисления площади и найти определенный интеграл, используя формулу Ньютона-Лейбница:
— ∫ 0 π 2 3 sin t · 2 cos t ‘ d t = 6 ∫ 0 π 2 sin 2 t d t = 3 ∫ 0 π 2 ( 1 — cos ( 2 t ) d t = = 3 · t — sin ( 2 t ) 2 0 π 2 = 3 · π 2 — sin 2 · π 2 2 — 0 — sin 2 · 0 2 = 3 π 2
Значит, площадь фигуры, заданной исходной кривой, будет равна S ( G ) = 4 · 3 π 2 = 6 π .
Ответ: S ( G ) = 6 π
Уточним, что при решении задачи выше можно было взять не только четверть эллипса, но и его половину – верхнюю или нижнюю. Одна половина будет расположена на интервале x ∈ a ; b = — 2 ; 2 . В этом случае у нас бы получилось:
φ ( α ) = a ⇔ 2 cos α = — 2 ⇔ α = π + π k , k ∈ Z , φ ( β ) = b ⇔ 2 cos β = 2 ⇔ β = 2 π k , k ∈ Z
Таким образом, при k равном 0 , мы получили β ; α = 0 ; π . Функция x = φ ( t ) = 2 cos t на этом интервале будет монотонно убывать.
После этого вычисляем площадь половины эллипса:
— ∫ 0 π 3 sin t · 2 cos t ‘ d t = 6 ∫ 0 π sin 2 t d t = 3 ∫ 0 π ( 1 — cos ( 2 t ) d t = = 3 · t — sin ( 2 t ) 2 0 π = 3 · π — sin 2 · π 2 — 0 — sin 2 · 0 2 = 3 π
Важно отметить, что можно взять только верхнюю или нижнюю часть, а правую или левую нельзя.
Можно составить параметрическое уравнение данного эллипса, центр которого будет расположен в начале координат. Оно будет иметь вид x = a · cos t y = b · sin t . Действуя так же, как и в примере выше, получим формулу для вычисления площади эллипса S э л и п с а = πab .
Задать окружность, центр которой расположен в начале координат, можно с помощью уравнения x = R · cos t y = R · sin t , где t является параметром, а R – радиусом данной окружности. Если мы сразу воспользуемся формулой площади эллипса, то то у нас получится формула, с помощью которой можно вычислить площадь круга с радиусом R : S к р у г а = πR 2 .
Разберем еще одну задачу.
Условие: найдите, чему будет равна площадь фигуры, которая ограничена параметрически заданной кривой x = 3 cos 3 t y = 2 sin 3 t .
Решение
Сразу уточним, что данная кривая имеет вид вытянутой астроиды. Обычно астроида выражается с помощью уравнения вида x = a · cos 3 t y = a · sin 3 t .
Теперь разберем подробно, как построить такую кривую. Выполним построение по отдельным точкам. Это самый распространенный метод, который применим для большинства задач. Более сложные примеры требуют проведения дифференциального исчисления, чтобы выявить параметрически заданную функцию.
У нас x = φ ( t ) = 3 cos 3 t , y = ψ ( t ) = 2 sin 3 t .
Данные функции являются определенными для всех действительных значений t . Для sin и cos известно, что они являются периодическими и их период составляет 2 пи. Вычислив значения функций x = φ ( t ) = 3 cos 3 t , y = ψ ( t ) = 2 sin 3 t для некоторых t = t 0 ∈ 0 ; 2 π π 8 , π 4 , 3 π 8 , π 2 , . . . , 15 π 8 , получим точки x 0 ; y 0 = ( φ ( t 0 ) ; ψ ( t 0 ) ) .
Составим таблицу итоговых значений:
t 0 | 0 | π 8 | π 4 | 3 π 8 | π 2 | 5 π 8 | 3 π 4 | 7 π 8 | π |
x 0 = φ ( t 0 ) | 3 | 2 . 36 | 1 . 06 | 0 . 16 | 0 | — 0 . 16 | — 1 . 06 | — 2 . 36 | — 3 |
y 0 = ψ ( t 0 ) | 0 | 0 . 11 | 0 . 70 | 1 . 57 | 2 | 1 . 57 | 0 . 70 | 0 . 11 | 0 |
t 0 | 9 π 8 | 5 π 4 | 11 π 8 | 3 π 2 | 13 π 8 | 7 π 4 | 15 π 8 | 2 π |
x 0 = φ ( t 0 ) | — 2 . 36 | — 1 . 06 | — 0 . 16 | 0 | 0 . 16 | 1 . 06 | 2 . 36 | 3 |
y 0 = ψ ( t 0 ) | — 0 . 11 | — 0 . 70 | — 1 . 57 | — 2 | — 1 . 57 | — 0 . 70 | — 0 . 11 | 0 |
После этого отметим нужные точки на плоскости и соединим их одной линией.
Теперь нам надо найти площадь той части фигуры, что находится в первой координатной четверти. Для нее x ∈ a ; b = 0 ; 3 :
φ ( α ) = a ⇔ 3 cos 3 t = 0 ⇔ α = π 2 + πk , k ∈ Z , φ ( β ) = b ⇔ 3 cos 3 t = 3 ⇔ β = 2 πk , k ∈ Z
Если k равен 0 , то у нас получится интервал β ; α = 0 ; π 2 , и функция x = φ ( t ) = 3 cos 3 t на нем будет монотонно убывать. Теперь берем формулу площади и считаем:
— ∫ 0 π 2 2 sin 3 t · 3 cos 3 t ‘ d t = 18 ∫ 0 π 2 sin 4 t · cos 2 t d t = = 18 ∫ 0 π 2 sin 4 t · ( 1 — sin 2 t ) d t = 18 ∫ 0 π 2 sin 4 t d t — ∫ 0 π 2 sin 6 t d t
У нас получились определенные интегралы, которые можно вычислить с помощью формулы Ньютона-Лейбница. Первообразные для этой формулы можно найти, используя рекуррентную формулу J n ( x ) = — cos x · sin n — 1 ( x ) n + n — 1 n J n — 2 ( x ) , где J n ( x ) = ∫ sin n x d x .
∫ sin 4 t d t = — cos t · sin 3 t 4 + 3 4 ∫ sin 2 t d t = = — cos t · sin 3 t 4 + 3 4 — cos t · sin t 2 + 1 2 ∫ sin 0 t d t = = — cos t · sin 3 t 4 — 3 cos t · sin t 8 + 3 8 t + C ⇒ ∫ 0 π 2 sin 4 t d t = — cos t · sin 3 t 4 — 3 cos t · sin t 8 + 3 8 t 0 π 2 = 3 π 16 ∫ sin 6 t d t = — cos t · sin 5 t 6 + 5 6 ∫ sin 4 t d t ⇒ ∫ 0 π 2 sin 6 t d t = — cos t · sin 5 t 6 0 π 2 + 5 6 ∫ 0 π 2 sin 4 t d t = 5 6 · 3 π 16 = 15 π 96
Мы вычислили площадь четверти фигуры. Она равна 18 ∫ 0 π 2 sin 4 t d t — ∫ 0 π 2 sin 6 t d t = 18 3 π 16 — 15 π 96 = 9 π 16 .
Если мы умножим это значение на 4 , получим площадь всей фигуры – 9 π 4 .
Точно таким же образом мы можем доказать, что площадь астроиды, заданной уравнениями x = a · cos 3 t y = a · sin 3 t , можно найти по формуле S а с т р о и д ы = 3 πa 2 8 , а площадь фигуры, которая ограничена линией x = a · cos 3 t y = b · sin 3 t , считается по формуле S = 3 πab 8 .
Видео:Площадь фигурыСкачать
Вычислить площадь фигуры, ограниченной кривыми онлайн
Вычисление площадей плоских фигур является одним из приложений определенного интеграла.
Для того, чтобы получить площадь фигуры изображенной на рисунке, необходимо вычислить определенный интеграл вида:
Функции и как правило, известны из условия задачи, а вот абсциссы их точек пересечения и придется дополнительно найти. Для этого необходимо решить уравнение:
Описанным выше способом, можно также найти площадь криволинейной трапеции в случае, если графики функций и не пересекаются, но точки и заданы по условию задачи:
В этом случае криволинейная трапеция (фигура площадь которой мы вычисляем) образована графиками функций , и прямыми , .
Онлайн калькулятор, построенный на основе системы Wolfram Alpha, автоматически вычислит площадь фигуры, образованной пересечением двух графиков функций.
Видео:Астроида: найдем площадь и длину через определенный интегралСкачать
Презентация на тему: Интегральное исчисление. Нахождение площадей фигур в среде Mathcad
Интегральное исчисление.Нахождение площадей фигур в среде Mathcad Преподаватель математики: Шутилина С.Н.
Площадь фигуры Для нахождения площади фигуры, ограниченной кривыми, используется определенный интеграл. При этом, пределы интегрирования находятся в точках пересечения заданных кривых
Работа в Mathcad В среде Mathcad для определения пределов интегрирования используется функция root(f(x),x), а для нахождения определенного интеграла – соответствующий шаблон на наборной панели Calculus
Формулировка задания Найти площадь фигуры, ограниченной кривыми:
Реализация в среде Mathcad Для определения пределов интегрирования необходимо будет построить графики обеих функций, графически определить приближенные значения, а потом, используя функцию root(f(x),x), найти точные значения пределов интегрирования Для построения графиков функций, обозначим одну функцию за f(x), а вторую за y(x)
Реализация в среде Mathcad Зададим обе функции:
Реализация в среде Mathcad Построим графики этих функций:
Реализация в среде Mathcad По графику определилась фигура, площадь которой нужно найти: Зададим эту новую функцию в Mathcad
Реализация в среде Mathcad Также графически определились приближенные пределы интегрирования Зададим приближенное значение нижнего предела интегрирования:
Реализация в среде Mathcad Точное значение нижнего предела интегрирования найдем с помощью функции root. Будем учитывать, что вместо f(x), в функции root используется g(x):
Реализация в среде Mathcad Зададим приближенное значение верхнего предела интегрирования и найдем его точное значение:
Реализация в среде Mathcad Теперь можно найти значение интеграла фигуры g(x), ограниченной линиями f(x) и y(x):
Выводы Среда Mathcad упрощает решение сложных математических задач и позволяет использовать на занятиях по математике не только традиционные методы, но и компьютерную технику, которая облегчает вычисления. Однако, существенным недостатком решения задач с помощью Mathcad является то, что среда выводит только конечный результат, поэтому промежуточные вычисления не видны пользователю
📹 Видео
Площади 12Скачать
Определённый интеграл. ПлощадьСкачать
Найти площадь фигуры, ограниченной линиями. Пример 1.Скачать
1502.Вычисление площади фигурыСкачать
Площадь фигуры между двумя кривымиСкачать
Площадь фигуры через двойной интеграл в полярных координатахСкачать
Криволинейная трапеция и ее площадь. Практическая часть. 11 класс.Скачать
Найти площадь фигуры, ограниченной линиями. Пример 5.Скачать
Самый простой способ нахождения площадиСкачать
Площади фигур. Сохраняй и запоминай!#shortsСкачать
Как найти площадь фигуры?Скачать
Определенные интегралы и площадь фигурыСкачать
Интегралы №12 Вычисление площадейСкачать
Как найти площадь "сердечка" — фигуры, ограниченной кривой x^2+(y−sqrt(|x|))^2=1?Скачать
Геометрический смысл определенного интеграла (2)Скачать