площадь ометания ротора формула

Видео:Ротор Дарье: ветряк с вертикальной осьюСкачать

Ротор Дарье: ветряк с вертикальной осью

Площадь ометания ротора формула

площадь ометания ротора формула Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

площадь ометания ротора формулаСправочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

площадь ометания ротора формулаТехническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

площадь ометания ротора формула Бесплатный архив статей
(500000 статей в Архиве)

площадь ометания ротора формулаАлфавитный указатель статей в книгах и журналах

площадь ометания ротора формулаБонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua

площадь ометания ротора формула
сделано в Украине

площадь ометания ротора формула

площадь ометания ротора формула

Основной частью ветроустановки, является ветроколесо. Посредством его кинетическая энергия ветра преобразовывается в энергию механическую.

Напомним ветроколеса делятся на две группы — с горизонтальной и вертикальной осью вращения. Мы будем рассматривать ветроколесо с горизонтальной осью вращения. Оно может иметь одну или несколько лопастей, которые устанавливаются под некоторым углом к плоскости вращения.

Ветроколесо может быть быстроходным или тихоходным. В зависимости от диаметра и количества лопастей обороты ветроколеса при одной и той же скорости ветра будут разные. Этот показатель называется быстроходностью ветроколеса и определяется отношением окружной скорости конца лопасти к скорости ветра:

где: W — частота вращения ветроколеса (об/мин.); V — скорость ветра (м/с); L — длина окружности (м).

  • 1 — лопастное ветроколесо Z = 9,0;
  • 2 — лопастное ветроколесо Z = 7,0;
  • 3 — лопастное ветроколесо Z = 5,0;
  • 6 -лопастное ветроколесо Z = 3,0;
  • 12 -лопастное ветроколесо Z = 1,2.

По приведенной ниже формуле рассчитаем обороты ветроколеса:

От исполнения ветроколеса зависят результаты работы всей конструкции и безопасная эксплуатация установки.

Многолопастные конструкции — низкооборотитые и, следовательно, центробежные и гироскопические силы значительно меньше, чем у высокоскоростных. Учитывая то, что технологии изготовления ветроколес в любительских условиях оставляют желать лучшего, рекомендуют многолопастные ветроколеса с количеством лопастей не менее пяти — такие конструкции не так критичны к погрешностям балансировки, не требовательны к аэродинамическому исполнению профиля лопасти и с успехом могут применятся вогнутые лопатки.

Если разместить лист фанеры под углом к набегающему потоку воздуха, то максимальная подъемная сила при одинаковой скорости воздуха будет при угле установки равной 45°. По мере уменьшения или увеличения угла, будет уменьшаться и подъемная сила, а сопротивление потоку будет, соответственно, уменьшаться или увеличиваться. Поэтому возьмем за отправную точку угол в 45°. Но дня того, чтобы ветроколесо максимально эффективно использовало энергию ветра и не имело зон торможения — колесо должно иметь изогнутую форму: чем дальше от оси вращения находится элемент лопасти, тем меньший угол установки требуется

Одним из показателей для расчета лопасти является шаг винта — расстояние, на которое переместится масса воздуха за один оборот, если представить эту массу воздуха в виде гайки диаметр которой равон 2R, а угол подъема резьбы равен углу между хордой взятого сечения и плоскостью вращения винта. Шаг винта определяется по формуле:

где: Н = шаг выделенного сечения (м.); R = радиус сечения (м.); α = угол установки сечения (град.).

Угол установки сечения лопастей ветроколеса определим по преобразованной формуле:

α (угол установки) = Arctg (H/2 π R).

Пример расчета крутки лопасти

Шаг лопасти = 1 метр, диаметр ветроколеса = 3 метра.

При данных установках в идеале, без учета сопротивления ветроколеса, при скорости ветра 3 м/с ветроколесо должно сделать 3 оборота в секунду или 3*60 = 180 об/мин.

Но это в идеале. На самом деле, на скорость врашения ветроколеса влияют турбулентность потока от предыдущей лопасти, трение, создаваемое самими лопастями, реакция генератора в зависимости от приложенной электрической нагрузки. И в реальности обороты ветроколеса будут стремится к расчетным показателям, но фактически окажутся значительно ниже.

Мощность ветрового потока

Следующий показатель при расчете ветроколеса, это мощность ветрового потока, проходящего через площадь ометания ветроколеса. Вычисляют ее достаточно точно по общепринятой методике:

Р = 0,5 * Q * S * V 3 ,

где Р — мощность (Вт); Q — плотность воздуха (1,23 кг/ м3); S — площадь ометания ротора (м:); V — скорость ветра (м/с).

Так как стопроцентного преобразования одного вида энергии в другую невозможно, то начнем вычитать потери. Ветроколесо имеет определенный коэффициент использования (преобразования) энергии ветра. Максимальное значение теоретического использования энергии ветра у идеальных быстроходных крыльчатых ветроколес равно 0,593. Для лучших образцов быстроходных ветроколес с аэродинамическим профилем этот показатель составляет от 0,42 до 0,46. Для многолопастных тихоходных ветроколес этот показатель колеблется от 0,27 до 0,35 в зависимости от качества исполнения и в расчетах обозначается символом Ср. Для согласования оборотов тихоходного ветроколеса и генератора необходимо использовать повышающий редуктор и его КПД колеблется от 0,7 до 0,9 в зависимости от коэффициента передачи и исполнения.

Преобразовывая механическую энергию в электрическую, также несем потери. Поэтому отражаем их в КПД генератора Ng от 0,6 (для автотракторных генераторов с обмоткой возбуждения) до 0,8 (для генераторов с возбуждением от постоянных магнитов).

Р = 0,5 * Q * S * V3 * Ср * Ng * Nb,

где Р — мощность (Вт); Q — плотность воздуха (1,23 кг/ м3); S — площадь ометания ротора (м2); V — скорость ветра, (м/с); CP — коэффициент использования энергии ветра (0,35 хороший конструктив); Ng — КПД генератора (автомобильного 0,6, на постоянных магнитах 0,8); Nb — КПД повышающего редуктора (0,7-0,9).

Подставим данные для 6-лопастного 3-метрового ветроколеса и узнаем, какую мощность можно получить на ветроустановке с генератором на постоянных магнитах и редуктором, имеющим КПД = 0.9 при средней скорости 5 м/с:

Р = 0,5 * 1,23 * (3,14 *(1,5*1,5 )) * ( 5 * 5 * 5 ) * 0,35 * 0,8 * 0,9 = 136 Вт.

При этом обороты ветроколеса составят.

W = V / L * Z * 60 = 5 / 9,42 * 3 * 60 = 95,5 об/мин.

Остается подобрать передаточное число редуктора в зависимости от оборотов генератора.

площадь ометания ротора формулаСмотрите другие статьи раздела Альтернативные источники энергии.

площадь ометания ротора формулаЧитайте и пишите полезные комментарии к этой статье.

Видео:Ротор Онипко своими рукамиСкачать

Ротор Онипко своими руками

Расчет вертикальных ветрогенераторов

Видео:Компас 3D уроки - ротор ОнипкоСкачать

Компас 3D уроки - ротор Онипко

Самодельный вертикальный ветрогенератор

Для расчета есть простая формула:

P— мощность Ватт

S— площадь ометания лопастей кв.м.

V^3— Скорость ветра в кубе м/с

0.6 — это скорость ветра. Ветер движущийся в пространстве принимается за единицу, но ветер при подходе к любому препятствию теряет свою скорость и мощность. Так-как потери в скорости нам не известны, то будем брать 0.6, это с учетом того что ветер потеряет скорость на 33%.

Дополнительно формула расчета площади круга S=πr2, где

r— радиус окружности в квадрате

Вообще вертикальные ветряки подобно рекламным щитам ветер тормозят очень сильно, и перед препятствием образуется воздушная подушка, натыкаясь на которую новые порции ветра расходятся по сторонам и 30-40% энергии ветра уходит не принимая участия в давлении на лопасти. По-этому общий КПД, или по правильному КИЭВ ветроколеса у вертикальных ветряков достаточно низкий и составляет всего 10-20% от энергии ветра.

Из анализа самодельных вертикальных ветряков КИЭВ в основном 10% всего, но мы-же оптимисты, по-этому я буду брать КИЭВ 0.2, хотя здесь еще не учитывается КПД генератора и трансмиссии.

Далее по формуле подставляя данные для этого ветроколеса получается что:

0.6*6*2*2*2*0.2=5,76 ватт при 2м/с

0.6*6*3*3*3*0.2=19,44 ватт при 3м/с

0.6*6*4*4*4*0.2=46,08 ватт при 4м/с

0.6*6*5*5*5*0.2=90 ватт при 5м/с

0.6*6*7*7*7*0.2=246 ватт при 7м/с

0.6*6*10*10*10*0.2=720 ватт при 10м/с

Теперь понятно на что способен данный ротор. Далее нам нужно подогнать генератор к этому ротору чтобы генератор смог вырабатывать максимально возможную мощность, которая имеется на роторе, и при этом не перегружать ротор — чтобы он мог вращаться и его обороты сильно не падали. Иначе толку не будет, выработка энергии сильно упадет. Чтобы подогнать генератор нам нужно узнать обороты ветроколеса на каждой скорости ветра.

В отличие от горизонтальных ветряков, где скорость вращения кончиков лопастей обычно в 5 раз быстрее скорости ветра, вертикальный ветрогенератор не может вращаться быстрее скорости ветра. Это связано с тем что тут ветер просто толкает лопасть, и она начинает двигаться с потоком проходящего ветра. А горизонтальный винт работает за счет подъемной силы, которая образуется у тыльной части лопасти, и она выдавливает лопасть вперед, и тут обороты ограничиваются только аэродинамическими свойствами лопасти и подъемной силой.

Вдаваться в подробности не будем, и вернемся к нашему ветроколесу. Чтобы высчитать обороты ротора размером 2*3 метра, где ширина ротора 2 метра, нужно узнать длину окружности ротора. 2*3,14=6.28 метра, то-есть за один оборот кончик лопасти проходит путь в 6.28 метра. Это значит что в идеале полный оборот ротор сделает за проходящий поток ветра длинной 6.28 метра. Но так-как энергия тратится на вращение, на трансмиссию, да еще и на вращение генератора — который нагружен аккумулятором, то обороты упадут в среднем в два раза. И того полный оборот ротор сделает за 12 метров потока ветра.

Тогда получается так, если ветер 3м/с, то при этом ветре за секунду ротор сделает 0,4 оборота, а за 4 секунды полный оборот. А за минуту при ветре 3м/с будет 60:4=15об/м.

При 3м/с 12:3=4, 60:4=15об/м

При 4м/с будет 12:4=3, 60:3=20об/м.

При ветре 5м/с 12:5=2.4, 60:2.4=25об/м.

При 7м/с 12:7=1.71, 60:1,71=35об/м

При 10м/с 12:10=1.2, 60:1.2=50об/м

С оборотами ветроколеса я думаю теперь понятно, и они известны. Чем больше в диаметре ветроколесо, тем меньше его обороты относительно скорости ветра. Так к примеру ветроколесо диаметром 1 метр будет крутится в два раза быстрее чем ветроколесо 2м в диаметре.

Теперь нужен генератор, который на этих оборотах должен вырабатывать мощность не более чем может выдать ветроколесо. А если генератор будет мощнее, то он перегрузит ротор, и тот не сможет раскрутится до своих оборотов, и в итоге обороты будут низкие и общая мощность. При ветре 3м/с у нас 15 об/м, и мощность ветроколеса 19 ватт, вот нужно чтобы генератор нагружал ротор не более 19ватт. Это с учетом КПД редуктора (если он имеется) и КПД самого генератора. КПД редуктора и генератора обычно не известны, но на них тоже значительные потери, и в общем на этом теряется 20-50% энергии, и на выходе на аккумулятор уже поступает всего 50%, это в нашем случае 10ватт примерно.

Если генератор перегрузит ветроколесо, то его обороты не выйдут на номинальные, и будут значительно ниже скорости ветра. От этого упадут обороты генератора и его мощность. Плюс еще значительно медленные по скорости лопасти относительно ветра, будут его сильно тормозить и ветер будет разбегаться в стороны, в итоге мощность ветроколеса упадет еще больше. Так со слишком мощным генератором энергии на аккумулятор будет в разы меньше чем могло бы быть. Или наоборот, когда генератор слишком слабый и при 15об/м ветроколеса не может на полную нагрузить ветроколесо, то то-же получается что мы берем гораздо меньше энергии от возможной.

В итоге генератор должен соответствовать по мощности ветроколесу, только так мы можем снять максимально возможную мощность ветроколеса. Это можно сказать самая сложная задача так-как генератор может абсолютно разных характеристик напряжения и тока к оборотам. Чтобы подобрать генератор его нужно покрутить на аккумулятор и измерить отдаваемую энергию, или просчитать по формулам. А далее уже пробовать подгонять к ветроколесу.

К примеру у вашего генератора при 300об/м 1Ампет на АКБ 14вольт, это примерно 14ватт, а ветроколесо выдает 19ватт при 15об/м. Значит мультипликатор нужен 1:20 чтобы генератор крутился при этом на 300об/м. При 5м/с обороты ветроколеса 25об/м, а генератор значит будет вращаться со скоростью 500об/м. Мощность ветроколеса у нас при этом всего 90ватт, а генератор превышает по мощности и дает 200ватт. Так не пойдет ветроколесо просто будет медленно вращаться и свои 90ватт не выдаст — а 200ватт тем-более. Выход — или жертвовать началом зарядки и делать редуктор 1:15, или увеличивать по высоте ветроколесо в два раза чтобы ветроколесо потянуло генератор.

Так нужно чтобы генератор соответствовал по мощности и оборотам на всем диапазоне вращения ветроколеса. А если генератор не-дотягивает по мощности, то нужно или увеличивать передаточное число мультипликатора, или уменьшать ротор чтобы добиться баланса между оборотами и мощностью ветроколеса и генератора. Часто люди вообще без всяких расчетов ставят генераторы от чего найдут, и строят ветроколесо насмотревшись видео с ютюба, а в итоге получается что ветрогенератор не работает на малом ветру и по мощности просто мизер совсем.

Видео:Почему бытовая ветрогенерация оказалась фуфломСкачать

Почему бытовая ветрогенерация оказалась фуфлом

Расчет ветроколеса

Основной частью ветроустановки, является ветроколесо. Посредством его преобразовывается кинетическая энергия ветра, в энергию механическую.

площадь ометания ротора формула

Делятся ветроколеса на две группы:
1 — с горизонтальной осью вращения;
2 – с вертикальной осью вращения.

Мы пока будем рассматривать ветроколесо с горизонтальной осью вращения. Оно может иметь одну или много лопастей, которые устанавливаются под некоторым углом к плоскости вращения ветроколеса. Ветроколесо может быть быстроходным или тихоходным. В зависимости от диаметра и количества лопастей обороты ветроколеса при одной и той же скорости ветра будут разные. Этот показатель называется быстроходностью ветроколеса и определяется отношением окружной скорости конца лопасти к скорости ветра.

где:
W –частота вращения ветроколеса (об/мин.)
V — скорость ветра (м/с.)
L — длина окружности ( м.)
Z — быстроходность конструкции ветроколеса.

Но так как первоначально мы не знаем частоту оборотов ветроколеса, которые зависят от его исполнения. При прохождении воздуха через лопасти, остается возмущенный след который тормозит вращение ветроколеса. И поэтому чем лопастей больше, тем быстроходность становится меньше. Поэтому, чтобы ориентировочно рассчитать обороты ветроколеса, возьмем за основу быстроходность (Z), установленную практическим путем для ветроколес с разным количеством лопастей

1 лопастное ветроколесо Z = 9,0
2 лопастное ветроколесо Z = 7,0
3 лопастное ветроколесо Z = 5,0
6 лопастное ветроколесо Z = 3,0
12 лопастное ветроколесо Z = 1,2

И по приведенной ниже формуле рассчитаем обороты ветроколеса.

От исполнения ветроколеса зависят: результаты работы всей конструкции и безопасная эксплуатация установки.

Обороты ветроколеса в зависимости от скорости ветра, диаметра и быстроходности (об/мин)
Диаметр ветроколеса (метры)2Скорость ветра м/с
ВетроколесоZ123456789101112
1-лопастное9861722583444305166026887748609461032
2-лопастное767134201268334401468535602669736803
3-лопастное54896143191239287334382430478525573
6-лопастное3295786115143172201229258287315344
12-лопастное1,21123344657698092103115126138

Как видно из таблицы многолопастные конструкции, низкооборотистые, и следовательно центробежные и гироскопические силы значительно меньше чем у высокоскоростных. Учитывая то, что технологии изготовления ветроколес в любительских условиях оставляют желать лучшего, и не потому, что умельцы неспособны изготовить шедевры, а потому, что соблюдая все критерии в домашних условиях данные конструкции будут золотыми. Возьму на себя смелость рекомендовать многолопастные ветроколеса с количеством лопастей не менее 5. Такие конструкции не так критичны к погрешностям балансировки. Они не требовательны к аэродинамическому исполнению профиля лопасти и с успехом могут применятся вогнутые лопатки.

Но как установить эти лопатки? Давайте рассмотрим этот вопрос.

Если к примеру разместить простой лист фанеры под углом к набегающему потоку воздуха то максимальная подъемная сила при одинаковой скорости воздуха будет при угле установки равной 45 градусам. По мере уменьшения или увеличения установки угла, будет уменьшатся и подъемная сила, а сопротивление потоку будет уменьшаться или увеличиваться соответственно . Поэтому возьмем за отправную точку — угол в 45 градусов. Но чем дальше от оси вращения находится элемент лопасти, тем меньше угол установки физически должен быть для этого элемента установлен. Это видно на рисунке. Объем воздуха ограниченный по длине должен пройти через площадь ветроколеса.

За счет угловой скорости, сечения, на разных радиусах лопасти, что бы пройти свой путь с одинаковой эффективностью, в объеме воздуха, и не создавать торможения должны иметь разный угол установки. И чем дальше от оси вращения, тем угол становится меньше.

Нажмите на картинку для ее увеличения
площадь ометания ротора формула

Одним из показателей для расчета лопасти является шаг винта. На рисунке показан шаг для одного из поперечных сечений лопасти, удаленных от оси винта на расстояние R.

площадь ометания ротора формула

Другими словами можно сказать, что шаг данного сечения есть расстояние, на которое переместится масса воздуха за один оборот, если представить эту массу воздуха в виде гайки диаметр которой равен 2R, а угол подъема резьбы равен углу между хордой взятого сечения и плоскостью вращения винта. Шаг винта определяется по формуле:

Где:
H = шаг выделенного сечения (м.);
R = радиус сечения (м.);
a = угол установки сечения (град.)

Угол установки сечения лопастей ветроколеса определим по преобразованной формуле:

a (угол установки) = Arctg ( H / 2ПR )

Пример расчета крутки лопасти:
шаг лопасти = 1 метр,
диаметр ветроколеса = 3.1 метра

Расчет крутки лопасти
Растояние до сечения от оси вращения, см.102030405060708090100110120130140150
Угол установки сечения, град.57,938,528,021,717,714,912,811,310,09,08,27,67,06,56,1

При данных установках, в идеале без учета сопротивления ветроколеса, при скорости ветра 3 м/с ветроколесо должно сделать 3 оборота в секунду или 3 * 60 = 180 об/мин.

Но это в идеале. На самом деле, на скорость вращения ветроколеса влияют турбулентность потока от предыдущей лопасти, трение создаваемые самими лопастями, реакция генератора в зависимости от приложенной электрической нагрузки. И в реальности обороты ветроколеса будут стремится к расчетным показателям, но фактически окажутся значительно ниже.

Следующий показатель при расчете ветроколеса, это мощность ветрового потока проходящего через площадь ометания ветроколеса. Вычисляют ее достаточно точно по обще принятой методике:

P = 0,5 *Q * S * V 3

P — мощность (Вт);
Q — плотность воздуха (1,23 кг/м 3 );
S — площадь ометания ротора ( м 2 );
V — скорость ветра ( м/с );

Но так как сто процентного преобразования одного вида энергии в другую не возможно, то начнем вычитать потери. Ветроколесо имеет определенный коэффициент использования (преобразования) энергии ветра. Максимальное значение теоретического использования энергии ветра у идеальных быстроходных крыльчатых ветроколес равно 0,593. Для лучших образцов быстроходных ветроколес с аэродинамическим профилем этот показатель составляет от 0,42 до 0,46. Для многолопастных тихоходных ветроколес этот показатель колеблется от 0,27 до 0,35 в зависимости от качества исполнения и в расчетах обозначается символом Cp. Для согласования оборотов тихоходного ветроколеса и генератора необходимо использовать повышающий редуктор и его КПД колеблется от 0,7 до 0,9 в зависимости от коэффициента передачи и исполнения.

Преобразовывая механическую энергию в электрическую, также несем потери. Поэтому отражаем их в КПД генератора Ng от 0,6 ( для автотракторных генераторов с обмоткой возбуждения ) до 0,8 (для генераторов с возбуждением от постоянных магнитов).

P = 0,5 *Q * S * V 3 * Cp * Ng * Nb ;

P — мощность (Вт);
Q — плотность воздуха (1,23 кг/м 3 );
S — площадь ометания ротора ( м 2 );
V — скорость ветра, ( м/с) ;
CP — коэффициент использования энергии ветра (0,35 хороший конструктив);
Ng — КПД генератора (автомобильного 0,6, на постоянных магнитах 0,8);
Nb — КПД повышающего редуктора (0,7 — 0,9).

Подставим данные для 6-ти лопастного 3 метрового ветроколеса и узнаем, какую мощность можно получить на ветроустановке с генератором на постоянных магнитах и редуктором имеющим КПД = 0.9 при средней скорости 5 м/с.:

P = 0,5 * 1,23 * (3,14 *(1,5*1,5 )) * ( 5 * 5 * 5 ) * 0,35 * 0,8 * 0,9 = 136 Вт.

При этом обороты ветроколеса составят :

W = V / L * Z * 60 = 5 / 9,42 * 3 * 60 = 95,5 об/мин.

Остается подобрать передаточное число редуктора в зависимости от оборотов генератора.

Загрузить расчет ветроколеса можно здесь: Расчет ветроустановки.xls

Подставьте в поля желтого цвета переменные соответствующие вашим условиям. И в первом приближении увидете возможный результат. Окончательный расчет выводится с учетом реактивного сопротивления ветроколеса под нагрузкой.

Видео:Ветрогенератор Часть 3. Я такого еще не видел! ПФМ-МК для ротора ветряка.Скачать

Ветрогенератор Часть 3. Я такого еще не видел! ПФМ-МК для ротора ветряка.

Альтернативная энергетика. Все документы

Как соорудить самодельную ветроустановку

Использован материал с разрешения автора Бойко Евгения Васильевича.

🌟 Видео

Эксперимент с ротором Дарье или вертикальный ветрогенератор.Скачать

Эксперимент с ротором Дарье или вертикальный ветрогенератор.

Вертикальный или горизонтальный ветряк, как все начиналось?Скачать

Вертикальный или горизонтальный ветряк, как все начиналось?

Простой способ разметки ротора ветрогенератора на любое количество полюсов без приспособленийСкачать

Простой способ разметки ротора ветрогенератора на любое количество полюсов без приспособлений

Ввод ротора в статор на ТГ-4Скачать

Ввод ротора в статор на ТГ-4

Ротор ДарьеСкачать

Ротор Дарье

Осевые усилияСкачать

Осевые усилия

Ротор ОнипкоСкачать

Ротор Онипко

Ветрогенератор своими руками. Часть 1Скачать

Ветрогенератор своими руками.  Часть 1

Ротор ОніпкоСкачать

Ротор Оніпко

собрал тестовую вертушку на ветрогенератор. лайк, и будем запускать!Скачать

собрал тестовую вертушку на ветрогенератор. лайк, и будем запускать!

Ветрогенератор на базе ротора Онипко!Скачать

Ветрогенератор на базе ротора Онипко!

Заработал самодельный ротор Дарье. Первые результаты вдохновляютСкачать

Заработал самодельный ротор Дарье. Первые результаты вдохновляют

Какой ветряк лучше? Вертикальный ветряк переделка на горизонтальный 02Скачать

Какой ветряк лучше? Вертикальный ветряк переделка на горизонтальный 02

ВЕТРОГЕНЕРАТОР РОТОРА ОНИПКА ( часть 1 )Скачать

ВЕТРОГЕНЕРАТОР РОТОРА ОНИПКА ( часть 1 )

Ротор Онипко в действии!Скачать

Ротор Онипко в действии!
Поделиться или сохранить к себе: