- Двойной интеграл с примерами решения и образцами выполнения
- Геометрический и физический смысл двойного интеграла
- Масса плоской пластинки
- Основные свойства двойного интеграла
- Вычисление двойного интеграла в декартовых координатах
- Вычисление двойного интеграла в полярных координатах
- Приложения двойного интеграла
- Объем тела
- Площадь плоской фигуры
- Масса плоской фигуры
- Статические моменты и координаты центра тяжести плоской фигуры
- Моменты инерции плоской фигуры
- Двойной интеграл
- Вычисление площади фигуры в полярных координатах
- Краткий обзор статьи
- Полярная система координат и криволинейный сектор
- Площадь криволинейного сектора — вывод формулы
- Примеры вычисления площади криволинейного сектора
- Площадь фигуры, которую ограничивает лемниската Бернулли
- Площадь фигуры, границей которой является кардиоида
- Площадь фигуры, которую ограничивает улитка Паскаля
- Площадь фигур, границей которых является спираль Архимеда или логарифмическая спираль
- Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов
- Как вычислить площадь фигуры в полярных координатах с помощью интеграла?
- Как построить фигуру, если её НАДО построить, но под рукой нет программы?
- 💡 Видео
Видео:Криволинейная трапеция и ее площадь. 11 класс.Скачать
Двойной интеграл с примерами решения и образцами выполнения
Обобщением определенного интеграла на случай функций двух переменных является так называемый двойной интеграл.
Пусть в замкнутой области D плоскости Оху задана непрерывная функция z = f(x;y). Разобьем область D на п «элементарных областей» площади которых обозначим через а диаметры (наибольшее расстояние между точками области) — через (см. рис. 214).
В каждой области выберем произвольную точку умножим значение функции в этой точке на и составим сумму всех таких произведений:
Эта сумма называется интегральной суммой функции f(x; у) в области D.
Рассмотрим предел интегральной суммы (53.1), когда п стремится к бесконечности таким образом, что Если этот предел существует и не зависит ни от способа разбиения области D на части, ни от выбора точек в них, то он называется двойным интегралом от функции f(x;y) по области D и обозначается
Таким образом, двойной интеграл определяется равенством
В этом случае функция f(x;y) называется интегрируемой в области D; D — область интегрирования; х и у — переменные интегрирования; dx dy (или dS) — элемент площади.
Для всякой ли функции f(x; у) существует двойной интеграл? На этот вопрос отвечает следующая теорема, которую мы приведем здесь без доказательства.
Теорема:
Достаточное условие интегрируемости функции. Если функция z = f(x;y) непрерывна в замкнутой области D, то она интегрируема в этой области.
Замечания:
- Далее будем рассматривать только функции, непрерывные в области интегрирования, хотя двойной интеграл может существовать не только для непрерывных функций.
- Из определения двойного интеграла следует, что для интегрируемой в области D функции предел интегральных сумм существует и не зависит от способа разбиения области. Таким образом, мы можем разбивать область D на площадки прямыми, параллельными координатным осям (см. рис. 215). При этом равенство (53.2) можно записать в виде
Видео:Площадь круга через интегралСкачать
Геометрический и физический смысл двойного интеграла
Рассмотрим две задачи, приводящие к двойному интегралу. Объем цилиндрического тела
Рассмотрим тело, ограниченное сверху поверхностью, снизу — замкнутой областью D плоскости Оху, с боков — цилиндрической поверхностью, образующая которой параллельна оси Oz, а направляющей служит граница области D (см. рис. 216). Такое тело называется цилиндрическим. Найдем его объем V. Для этого разобьем область D (проекция поверхности z = f(x; у) на плоскость Оху) произвольным образом на п областей , площади которых равны A Рассмотрим цилиндрические столбики с основаниями ограниченные сверху кусками поверхности z = f(x;y) (на рис. 216 один из них выделен). В своей совокупности они составляют тело V. Обозначив объем столбика с основанием через , получим
Возьмем на каждой площадке Di произвольную точку и заменим каждый столбик прямым цилиндром с тем же основанием и высотой Объем этого цилиндра приближенно равен объему цилиндрического столбика, т. е. Тогда получаем:
Это равенство тем точнее, чем больше число п и чем меньше размеры «элементарных областей» ,. Естественно принять предел суммы (53.3) при условии, что число площадок неограниченно увеличивается а каждая площадка стягивается в точку за объем V цилиндрического тела, т. е.
или, согласно равенству (53.2),
Итак, величина двойного интеграла от неотрицательной функции равна объему цилиндрического тела. В этом состоит геометрический смысл двойного интеграла.
Масса плоской пластинки
Требуется найти массу m плоской пластинки D. зная, что ее поверхностная плотность есть непрерывная функция координат точки (х; у). Разобьем пластинку D на п элементарных частей площади которых обозначим через . В каждой области возьмем произвольную точку и вычислим плотность в ней:
Если области D, достаточно малы, то плотность в каждой точке мало отличается от значения Считая приближенно плотность в каждой точке области постоянной, равной , можно найти ее массу Так как масса m всей пластинки D равна Для ее вычисления имеем приближенное равенство
Точное значение массы получим как предел суммы (53.5) при условии
или, согласно равенству (53.2),
Итак, двойной интеграл от функции численно равен массе пластинки, если подынтегральную функцию считать плотностью этой пластинки в точке (х; у). В этом состоит физический смысл двойного интеграла.
Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать
Основные свойства двойного интеграла
Можно заметить, что процесс построения интеграла в области D дословно повторяет уже знакомую нам процедуру определения интеграла функции одной переменной на отрезке (см. § 35). Аналогичны и свойства этих интегралов и их доказательства (см. § 38). Поэтому перечислим основные свойства двойного интеграла, считая подынтегральные функции интегрируемыми.
3.Если область D разбить линией на две области такие, что а пересечение состоит лишь из линии, их разделяющей (см. рис. 217), то
4.Если в области D имеет место неравенство то и Если в области D функции f(x;y) и удовлетворяют неравенству то и
6.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой — соответственно наименьшее и наибольшее значения подынтегральной функции в области D.
7.Если функция f(x;y) непрерывна в замкнутой области D, площадь которой S, то в этой области существует такая точка, что Величину
называют средним значением функции f(x; у) в области D.
Видео:Площадь сферы внутри цилиндра. Поверхностный интегралСкачать
Вычисление двойного интеграла в декартовых координатах
Покажем, что вычисление двойного интеграла сводится к последовательному вычислению двух определенных интегралов.
Пусть требуется вычислить двойной интеграл где функция непрерывна в области D. Тогда, как это было показано в п. 53.2, двойной интеграл выражает объем цилиндрического тела, ограниченного сверху поверхностью z = f(x;y). Найдем этот объем, используя метод параллельных сечений. Ранее (см. (41.6)) было показано, что
где S(x) — площадь сечения плоскостью, перпендикулярной оси Ох, а х = а, х = b — уравнения плоскостей, ограничивающих данное тело.
Положим сначала, что область D представляет собой криволинейную трапецию, ограниченную прямыми x = a и x = b и кривыми, причем функции непрерывны и таковы, что для всех (см. рис. 218). Такая область называется правильной в направлении оси Оу: любая прямая, параллельная оси Оу, пересекает границу области не более чем в двух точках.
Построим сечение цилиндрического тела плоскостью, перпендикулярной оси
В сечении получим криволинейную трапецию ABCD, ограниченную линиями
Площадь S(x) этой трапеции находим с помощью определенного интеграла
Теперь, согласно методу параллельных сечений, искомый объем цилиндрического тела может быть найден так:
С другой стороны, в п. 53.2 было доказано, что объем цилиндрического тела определяется как двойной интеграл от функции по области D. Следовательно,
Это равенство обычно записывается в виде
Формула (53.7) представляет собой способ вычисления двойного интеграла в декартовых координатах. Правую часть формулы (53.7) называют двукратным (или повторным) интегралом от функции f(x;y) по области D. При этом называется внутренним интегралом.
Для вычисления двукратного интеграла сначала берем внутренний интеграл, считая х постоянным, затем берем внешний интеграл, т. е. результат первого интегрирования интегрируем по х в пределах от а до b.
Если же область D ограничена прямыми кривыми
для всех т. е. область D — правильная в направлении оси Ох, то, рассекая тело плоскостью у = const, аналогично получим:
Здесь, при вычислении внутреннего интеграла, считаем у постоянным.
Замечания:
- Формулы (53.7) и (53.8) справедливы и в случае, когда
- Если область D правильная в обоих направлениях, то двойной интеграл можно вычислять как по формуле (53.7), так и по формуле (53.8).
- Если область D не является правильной ни «по x», ни «по у», то для сведения двойного интеграла к повторным ее следует разбить на части, правильные в направлении осиОх или оси Оу.
- Полезно помнить, что внешние пределы в двукратном интеграле всегда постоянны, а внутренние, как правило, переменные.
Пример:
Вычислить где область D ограничена линиями у
Решение:
На рисунке 220 изображена область интегрирования D. Она правильная в направлении оси Ох. Для вычисления данного двойного интеграла воспользуемся формулой (53.8):
Отметим, что для вычисления данного двойного интеграла можно воспользоваться формулой (53.7). Но для этого область D следует разбить на две области: . Получаем:
Ответ, разумеется, один и тот же.
Видео:Определённый интеграл. ПлощадьСкачать
Вычисление двойного интеграла в полярных координатах
Для упрощения вычисления двойного интеграла часто применяют метод подстановки (как это делалось и при вычислении определенного интеграла), т. е. вводят новые переменные под знаком двойного интеграла.
Определим преобразование независимых переменных х и у (замену переменных) как
Если функции (53.9) имеют в некоторой области D* плоскости Ouv непрерывные частные производные первого порядка и отличный от нуля определитель
а функция f(х; у) непрерывна в области D, то справедлива формула замены переменных в двойном интеграле:
Функциональный определитель (53.10) называется определителем Якоби или якобианом (Г. Якоби — немецкий математик). Доказательство формулы (53.11) не приводим.
Рассмотрим частный случай замены переменных, часто используемый при вычислении двойного интеграла, а именно замену декартовых координат х и у полярными координатами
В качестве инь возьмем полярные координаты Они связаны с декартовыми координатами формулами (см. п. 9.1).
Правые части в этих равенствах — непрерывно дифференцируемые функции. Якобиан преобразования определяется из (53.10) как
Формула замены переменных (53.11) принимает вид:
где D* — область в полярной системе координат, соответствующая области D в декартовой системе координат.
Для вычисления двойного интеграла в полярных координатах применяют то же правило сведения его к двукратному интегралу. Так, если
область D* имеет вид, изображенный на рисунке 221 (ограничена лучами и кривыми где т. е. область D* правильная: луч, выходящий из полюса, пересекает ее границу не более чем в двух точках), то правую часть формулы (53.12) можно записать в виде
Внутренний интеграл берется при постоянном
Замечания:
- Переход к полярным координатам полезен, когда подынтегральная функция имеет вид область Dесть круг, кольцо или часть таковых.
- На практике переход к полярным координатам осуществляется путем замены уравнения линий, ограничивающих область D, также преобразуются к полярным координатам. Преобразование области D в область D* не выполняют, а, совместив декартову и полярную системы координат, находят нужные пределы интегрирования по (исследуя закон изменения точки при ее отождествлении с точкой (х; у) области D).
Пример:
Вычислить где область D — круг
Решение: Применив формулу (53.12), перейдем к полярным координатам:
Область D в полярной системе координат определяется неравенствами (см. рис. 222) Заметим: область D —круг — преобразуется в область D* — прямоугольник. Поэтому, согласно формуле (53.13), имеем:
Видео:Интегралы №12 Вычисление площадейСкачать
Приложения двойного интеграла
Приведем некоторые примеры применения двойного интеграла.
Объем тела
Как уже показано (п. 53.2), объем цилиндрического тела находится по формуле
где z = f(x;y) — уравнение поверхности, ограничивающей тело сверху.
Площадь плоской фигуры
Если положить в формуле (53.4) f(x;y) = 1, то цилиндрическое тело «превратится» в прямой цилиндр с высотой Н = 1. Объем такого цилиндра, как известно, численно равен площади S основания D. Получаем формулу для вычисления площади S области D:
или, в полярных координатах,
Масса плоской фигуры
Как уже показано (п. 53.2), масса плоской пластинки D с переменной плотностью находится по формуле
Статические моменты и координаты центра тяжести плоской фигуры
Статические моменты фигуры D относительно осей Ох и Оу (см. п. 41.6) могут быть вычислены по формулам
а координаты центра масс фигуры по формулам
Моменты инерции плоской фигуры
Моментом инерции материальной точки массы m относительно оси l называется произведение массы m на квадрат расстояния d точки до оси, т. е. Моменты инерции плоской фигуры относительно осей Ох и Оу могут быть вычислены по формулам:
Момент инерции фигуры относительно начала координат — по формуле
Замечание:
Приведенными примерами не исчерпывается применение двойного интеграла. Далее мы встретим приложение двойного интеграла к вычислению площадей поверхностей фигур (п. 57.3).
Пример:
Найти объем тела, ограниченного поверхностями
Решение: Данное тело ограничено двумя параболоидами (см. рис. 223). Решая систему
находим уравнение линии их пересечения:
Искомый объем равен разности объемов двух цилиндрических тел с одним основанием (круг ) и ограниченных сверху соответственно поверхностями Используя формулу (53.4), имеем
Переходя к полярным координатам, находим:
Пример:
Найти массу, статические моменты и координаты центра тяжести фигуры, лежащей в первой четверти, ограниченной эллипсом и координатными осями (см. рис. 224). Поверхностная плотность в каждой точке фигуры пропорциональна произведению координат точки.
Решение: По формуле (53.6) находим массу пластинки. По условию, — коэффициент пропорциональности.
Находим статические моменты пластинки:
Находим координаты центра тяжести пластинки, используя формулы
Видео:Найти площадь фигуры, ограниченной линиями. Пример 1.Скачать
Двойной интеграл
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Видео:Площадь фигуры через двойной интеграл в полярных координатахСкачать
Вычисление площади фигуры в полярных координатах
В этом разделе мы продолжим разбирать тему вычисления площадей плоских фигур. Рекомендуем тем, кто изучает темы не по порядку, сначала обратиться к статье «Геометрический смысл определенного интеграла» и разобрать способы вычисления площади криволинейной трапеции. Нам понадобится вычислять площади фигур, которые ограничены ограничены линиями y = f ( x ) , x = g ( y ) в прямоугольной системе координат. А также раздел «Свойства площади фигур», где была разобрана квадрируемость плоских фигур.
Видео:11 класс, 21 урок, Определённый интегралСкачать
Краткий обзор статьи
- Начнем с определения понятия криволинейного сектора, получим формулу для вычисления его площади. Для этого мы используем понятие определенного интеграла Дарбу.
- Подробно разберем решения задач с использованием таких кривых как кардиоида, архимедова спираль и лемниската Бернулли.
- В отдельную подтему мы выделили нахождение площади фигуры, которая представлена как разность двух криволинейных секторов.
Видео:Как использовать интеграл для поиска площади и объема? Формулы для математики ЕНТ за 15 минутСкачать
Полярная система координат и криволинейный сектор
Точка, расположенная в полярной системе координат, имеет полярный угол φ 0 и полярный радиус r 0 ≥ 0 . Полярный угол φ 0 отсчитывается от полярной оси по часовой стрелке, а r 0 — это расстояние от заданной точки до начала координат.
На рисунке мы отметили начало координат (полюс) жирной черной точкой, полярная ось имеет вид луча черного цвета, а красная точка определяется углом φ 0 = 3 π 4 и расстоянием до полюса r 0 = 4 .
Мы можем рассматривать полярную систему координат одновременно с прямоугольной декартовой. Для этого необходимо совместить начала координат обеих систем, а ось абсцисс и полярной осью.
Задать связь полярных и декартовых координат можно соотношениями r = x 2 + y 2 φ = a r c t g y x , x ≠ 0 и обратно x = r · cos φ y = r · sin φ .
Координаты красной точки на чертеже 2 3 ; 2 . Положение этой точки задается углом φ 0 = a r c t g 2 2 3 = π 6 и расстоянием r 0 = 2 3 2 + 2 2 = 4 .
В полярной системе координат равенство φ = α задает луч, который выходит из точки начала координат и составляет угол α с полярной осью. При этом, угол α может быть задан как в радианах, так и в градусах. Полярную ось мы можем задать уравнением вида φ = 0 . Равенство r = C > 0 задает окружность с центром в начале координат, где — это радиус.
Функция r = p ( φ ) , φ ∈ α ; β определяет некоторую линию в полярных координатах.
Следует учитывать тот факт, что с позиции геометрии функция r = p ( φ ) , φ ∈ α ; β во всех случаях будет неотрицательной. Связано это с тем, что она задает расстояние от начала координат до точки для заданного значения угла φ = φ 0 ∈ α ; β . Однако мы будем встречать и отрицательные значения r = p ( φ ) функции, что зависит от отношения к данному вопросу конкретных исследователей и преподавателей.
На рисунке мы изобразили несколько примеров линий в полярной системе координат.
Дадим определение криволинейному сектору.
Криволинейный сектор представляет собой фигуру, которая ограничена лучами φ = α , φ = β и некоторой линией r = p ( φ ) ≥ 0 , непрерывной на участке α ; β .
На рисунке мы привели несколько примеров криволинейных секторов.
На последнем рисунке мы рассмотрели случай, когда фигура располагается между лучами φ = — π 6 , φ = π 6 , которые не являются ее границами.
Видео:Определенный интеграл. Площадь трапеции.Скачать
Площадь криволинейного сектора — вывод формулы
Для вычисления площади криволинейного сектора мы можем вывести формулу. Для этого мы можем использовать формулу площади кругового сектора радиуса R с внутренним углом γ из школьного курса геометрии: S к р у г о в о г о с е к т о р а = γ · R 2 2 . Задаем внутренний угол γ в радианах.
Разобьем криволинейный сектор на n частей такими лучами
φ = φ 1 , φ = φ 2 , . . . , φ = φ n — 1 , что α = φ 0 φ 1 φ 2 . . . φ n — 1 β и λ = m a x i = 1 , 2 , . . . , n φ i — φ i — 1 → 0 при n → + ∞ .
Учитывая свойства площади фигуры, мы можем представить площадь исходного криволинейного сектора S ( G ) как сумму площадей секторов S ( G i ) на каждом из участков разбиения:
S ( G ) = ∑ i = 1 n S ( G i )
Обозначим наибольшее и наименьшее значения функции r = p ( φ ) на i -ом отрезке φ i — 1 ; φ i , i = 1 , 2 , . . . , n как R m i n i и R m a x i . На каждом из отрезков построим по два круговых сектора P i и Q i с максимальным и минимальным радиусами R m i n i и R m a x i соответственно.
Фигуры, которые являются объединением круговых секторов Q i , i = 1 , 2 , . . . , n ; P i , i = 1 , 2 , . . . , n , обозначим как P и Q соответственно.
Их площади будут равны S ( P ) = ∑ i = 1 n S ( P i ) = ∑ i = 1 n 1 2 ( R m i n i ) 2 · φ i — φ i — 1 и S ( Q ) = ∑ i = 1 n S ( Q i ) = ∑ i = 1 n 1 2 ( R m a x i ) 2 · φ i — φ i — 1 , причем S ( P ) ≤ S ( G ) ≤ S ( Q ) .
Так как функция r = p φ непрерывна на отрезке α ; β , то функция 1 2 p 2 φ будет непрерывна на этом отрезке. Если рассматривать S ( P ) и S ( Q ) для этой функции как нижнюю и верхнюю суммы Дарбу, то мы можем прийти к равенству:
lim λ → 0 S ( P ) = lim λ → 0 S ( Q ) = S ( G ) ⇒ S ( G ) = lim λ → 0 ∑ i = 1 n 1 2 ( R m i n i ) 2 · φ i — φ i — 1 = = lim λ → 0 ∑ i = 1 n 1 2 ( R m a x i ) · φ i — φ i — 1 = 1 2 ∫ β α p 2 φ d φ
Формула для определения площади криволинейного сектора имеет вид:
S ( G ) = 1 2 ∫ β α p 2 φ d φ
Видео:Площадь круга. Математика 6 класс.Скачать
Примеры вычисления площади криволинейного сектора
Рассмотрим алгоритмы вычисления площади криволинейного сектора с полярной системе координат на конкретных примерах.
Необходимо вычислить площадь плоской фигуры в полярных координатах, которая ограничена линией r = 2 sin 2 φ и лучами φ = π 6 , φ = π 3 .
Решение
Для начала, изобразим описанную в условии задачи фигуру в полярной системе координат. Функция r = 2 sin ( 2 φ ) положительна и непрерывна на отрезке φ ∈ π 6 , π 3 .
Полученная фигура является криволинейным сектором, что позволяет нам применить формулу для нахождения площади этого сектора.
S ( G ) = 1 2 ∫ π 6 π 3 ( 2 sin ( 2 φ ) 2 d φ = ∫ π 6 π 3 2 ( sin ( 2 φ ) 2 d φ = ∫ π 6 π 3 2 · 1 — cos 4 φ 2 d φ = ∫ π 6 π 3 ( 1 — cos ( 4 φ ) ) d φ = φ — 1 4 sin ( 4 φ ) π 6 π 3 = = π 3 — 1 4 sin 4 π 3 — π 6 — 1 4 sin 4 π 6 = π 6 + 3 4
Ответ: S ( G ) = π 6 + 3 4
Задача упрощается в тех случаях, когда лучи φ = φ 1 , φ = φ 2 , ограничивающие фигуру, заданы. Тогда нам не нужно задумываться о пределах интегрирования при проведении вычисления площади.
Чаще встречаются задачи, где фигуру ограничивает лишь кривая r = p ( φ ) . В этих случаях применить формулу S ( G ) = 1 2 ∫ α β p 2 ( φ ) d φ сразу не получится. Для начала придется решить неравенство p ( φ ) ≥ 0 для нахождения пределов интегрирования. Так мы можем поступить в тех случаях, когда функция r = p φ неотрицательная. В противном случае нам придется ориентироваться только на область определения и период функции.
Необходимо вычислить площадь фигуры, которая ограничена кривой в полярных координатах r = — 3 · cos 3 φ .
Решение
Функция определена для всех действительных значений аргумента. Решим неравенство — 3 · cos 3 φ ≥ 0 :
— 3 · cos 3 φ ≥ 0 ⇔ cos 3 φ ≤ 0 ⇔ cos φ ≤ 0 ⇔ ⇔ π 2 + 2 πk ≤ φ ≤ 3 π 2 + 2 πk , k ∈ Z
Построим функцию в полярных координатах на отрезке φ ∈ π 2 ; 3 π 2 (при k = 0 ). Для других значений k в силу периодичности косинуса мы будем получать ту же самую кривую.
Применим формулу для вычисления площади фигуры в полярных координатах. В качестве нижнего и верхнего предела можно брать π 2 + 2 πk и 3 π 2 + 2 πk соответственно для любого целого значения k .
S ( G ) = 1 2 ∫ π 2 3 π 2 ( — 3 · cos 3 φ ) d φ = 9 2 ∫ π 2 3 π 2 cos 6 φ d φ
Для того, чтобы получить ответ, нам необходимо вычислить полученный определенный интеграл. Для этого мы можем использовать формулу Ньютона-Лейбница. Первообразную для формулы Ньютона-Лейбница мы можем с помощью рекуррентной формулы вида K n ( x ) = sin x · cos n — 1 ( x ) n + n — 1 n K n — 2 ( x ) , где K n ( x ) = ∫ cos n ( x ) d x .
∫ cos 6 φ d φ = sin φ · cos 5 φ 6 + 5 6 ∫ cos 4 φ d φ = = sin φ · cos 5 φ 6 + 5 6 sin φ · cos 3 φ 4 + 3 4 cos 2 φ d φ = = sin φ · cos 5 φ 6 + 5 sin φ · cos 3 φ 24 + 15 24 sin φ · cos φ 2 + 1 2 ∫ cos 0 φ d φ = = ∫ π 2 3 π 2 cos 6 φ d φ = sin φ · cos 5 φ 6 + 5 sin φ · cos 3 φ 24 + 15 sin φ · cos φ 48 + 15 φ 48 π 2 3 π 2 = = 15 48 · 3 π 2 — 15 48 · π 2 = 5 π 16
Таким образом, искомая площадь фигуры, ограниченной линией в полярной системе координат, равна S ( G ) = 9 2 ∫ π 2 3 π 2 cos 6 φ d φ = 9 2 · 5 π 16 = 45 π 32 .
Ответ: S ( G ) = 45 π 32
В тех случаях, когда в полярной системе координат задается множество кривых, которые по форме напоминают листья клевера или цветка, площадь фигур, ограниченных этими кривыми, часто одинаковы. В этих случаях можно вычислить площадь одного «лепестка» и умножить ее на количество криволинейных фигур.
Необходимо вычислить площадь плоской фигуры в полярной системе координат, которая ограничена линией r = 3 · cos ( 3 φ ) .
Решение
Найдем область определения, исходя из того, что эта функция неотрицательна для любого φ из области определения.
cos ( 3 φ ) ≥ 0 ⇔ — π 2 + 2 πk ≤ 3 φ ≤ π 2 + 2 πk , k ∈ Z — π 6 + 2 π 3 k ≤ φ ≤ π 6 + 2 π 3 k , k ∈ Z
Таким образом, период функции r = 3 · cos 3 φ равен 2 π 3 . Это значит, что фигура состоит из трех областей одинаковой площади.
Построим фигуру на графике.
Вычислим площадь одного участка, расположенного на интервале φ ∈ π 2 ; 5 π 6 (при k = 1 ):
1 2 ∫ π 2 5 π 6 9 cos ( 3 φ ) d φ = 1 2 · 3 sin ( 3 φ ) π 2 5 π 6 = 3 2 sin 3 · 5 π 6 — sin 3 · π 2 = 3 2 ( 1 — ( — 1 ) = 3
Ответ: Площадь всей фигуры будет равна площади найденного участка, умноженной на 3.
Аналогичным образом можно найти площади фигур, имеющих сходное строение. Примером может служить лемниската Бернулли.
Видео:Криволинейная трапеция и ее площадь. Практическая часть. 11 класс.Скачать
Площадь фигуры, которую ограничивает лемниската Бернулли
Лемниската Бернулли задается уравнением r = α · cos 2 φ где a – положительное число, влияющее на размер линии (но не на конфигурацию, схожую с символом бесконечности). Лемниската Бернулли строится при — π 4 + π · k ≤ φ ≤ π 4 + π · k , k ∈ Z .
Лемниската служит границей фигуры, которую можно представить как два равных по площади участка.
Для вычисления площади используем нужную формулу:
S ( G ) = 2 · 1 2 ∫ — π 4 π 4 a 2 cos ( 2 φ ) 2 φ = a 2 2 ( sin ( 2 φ ) ) — π 4 π 4 = = a 2 2 sin 2 · π 4 — sin 2 · — π 4 = a 2
Получается, что площадь фигуры, которую ограничивает лемниската Бернулли, равна квадрату коэффициента a .
Видео:Определенный интеграл. 11 класс.Скачать
Площадь фигуры, границей которой является кардиоида
В полярной системе координат кардиоида задается уравнением вида r = 2 a ( 1 + cos φ ) . В этом уравнении a – некоторое положительное число. Задающая кардиоиду функция является периодической с периодом 2 π . Она определена для всех действительных значений угла. Это значит, что для вычисления площади нижним пределом интегрирования мы будем считать любое число, а верхним, то, которое на 2 π больше нижнего.
Вычислим площадь фигуры, ограниченной кардиоидой r = 2 a ( 1 + cos φ ) , для φ ∈ 0 ; 2 π :
S ( G ) = 1 2 ∫ 0 2 π ( 2 a ( 1 + cos φ ) ) 2 d φ = 2 a 2 ∫ 0 2 π ( 1 + 2 cos φ + cos 2 φ ) d φ = = 2 a 2 ∫ 0 2 π 1 + 2 cos φ + 1 + cos 2 φ 2 d φ = = 2 a 2 ∫ 0 2 π 3 2 + 2 cos φ + cos ( 2 φ ) 2 d φ = = 2 a 2 3 2 φ + 2 sin φ + 1 4 sin 2 φ 0 2 π = 6 π · a 2
Видео:Площадь круга. Удиви своего учителя, применив интегрирование в Школе!Скачать
Площадь фигуры, которую ограничивает улитка Паскаля
В полярной системе координат улитка Паскаля может быть задана уравнением r = b + 2 a · cos φ . В этом уравнении a – это некоторое положительное число, b – любое действительное число. Кардиоиду можно рассматривать как частный случай улитки Паскаля. Получить кардиоиду можно при b = 2 a .
Улитка Паскаля в зависимости от значений параметров a и b может принимать различный вид. В данном разделе мы рассмотрим случаи, когда функцию r неотрицательная.
При b — 2 a функция r = b + 2 a · cos φ будет отрицательной для любого значения угла φ .
При b = — 2 a улитка Паскаля имеет вид точки, которая совпадает с полюсом.
При — 2 a b 0 функция r = b + 2 a · cos φ неотрицательна для φ ∈ — a r c cos — b 2 a + 2 πk ; arccos — b 2 a + 2 πk , k ∈ Z .
При 0 b 2 a функция r = b + 2 a · cos φ неотрицательна для φ ∈ — a r c cos — b 2 a + 2 πk ; arccos — b 2 a + 2 πk , k ∈ Z . Она ограничивает фигуру, которая по конфигурации напоминает кардиоиду.
При b > 2 a функция r = b + 2 a · cos φ является неотрицательной для любого значения угла. Графическая иллюстрация этого случая приведена ниже
Для того, чтобы правильно определить пределы интегрирования, необходимо учитывать соотношение параметров a и b .
Необходимы вычислить площадь фигуры, которая ограничена линиями, заданными уравнениями r = — 3 + 6 cos φ и r = 5 + 4 cos φ в полярной системе координат.
Решение
Формула r = — 3 + 6 cos φ соответствует фигуре, известной как улитка Паскаля..
Функция r = — 3 + 6 cos φ определена для всех значений угла φ . Нам необходимо выяснить, при каких φ функция будет неотрицательной:
— 3 + 6 cos φ ≥ 0 ⇔ cos φ ≥ 1 2 ⇔ — π 3 + 2 π k ≤ φ ≤ π 3 + 2 πk , k ∈ Z
Проведем вычисление площади фигуры, которая ограничена данной улиткой Паскаля:
S ( G ) = 1 2 ∫ — π 3 π 3 ( — 3 + 6 cos φ ) 2 d φ = 9 2 ∫ — π 3 π 3 ( 1 — 4 cos φ + 4 cos 2 φ ) d φ = = 9 2 ∫ — π 3 π 3 1 — 4 cos φ + 4 · 1 + cos 2 φ 2 d φ = = 9 2 ∫ — π 3 π 3 ( 3 — 4 cos φ + 2 cos ( 2 φ ) ) d φ = 9 2 · 3 φ — 4 sin φ + sin ( 2 φ — π 3 π 3 = = 9 2 · 3 · π 3 — 4 sin π 3 + sin 2 π 3 — 3 · — π 3 — 4 sin — π 3 + sin — 2 π 3 = = 9 2 · 2 π — 3 3
Улитка Паскаля, определяемая формулой r = 5 + 4 cos φ , соответствует пятому пункту. Функция r = 5 + 4 cos φ определена и положительна для всех действительных значений φ . Поэтому, площадь фигуры в этом случае равна:
S ( G ) = 1 2 ∫ 0 2 π ( 5 + 4 cos φ ) 2 d φ = 1 2 ∫ 0 2 π ( 25 + 40 cos φ + 16 cos 2 φ ) d φ = = 1 2 ∫ 0 2 π 25 + 40 cos φ + 16 · 1 + cos ( 2 φ ) 2 d φ = = 1 2 ∫ 0 2 π ( 33 + 40 cos φ + 8 cos ( 2 φ ) ) d φ = 1 2 · 33 φ + 40 sin φ + 4 sin ( 2 φ 0 2 π = = 1 2 · 33 · 2 π + 40 sin ( 2 π + 4 sin ( 4 π ) — 33 · 0 + 40 sin 0 + 4 sin 0 = 33 π
Ответ: S ( G ) = 33 π
Видео:Вычисление формулы площади кругаСкачать
Площадь фигур, границей которых является спираль Архимеда или логарифмическая спираль
Сразу обратимся к примеру.
Необходимо вычислить площадь фигур в полярной системе координат, первая из которых ограничена первым витком спирали Архимеда r = α φ , α > 0 , а вторая первым витком логарифмической спирали r = α φ , α > 1 .
Решение
Если в задаче сказано, что фигура ограничена первым витком спирали Архимеда, то угол φ изменяется от нуля до двух пи.
Исходя из этого, найдем площадь фигуры по формуле:
S ( G ) = 1 2 ∫ 0 2 π ( α φ ) 2 d ϕ = α 2 2 ∫ 0 2 π φ 2 d φ = α 2 2 · φ 3 3 0 2 π = 4 α 3 π 3 3
Аналогично вычисляется площадь фигуры, ограниченной первым витком логарифмической спирали:
S ( G ) = 1 2 ∫ 0 2 π ( α ϕ ) 2 d ϕ = 1 2 ∫ 0 2 π a 2 φ d φ = 1 4 ln a · a 2 φ 0 2 π = = 1 4 ln a · a 4 π — 1
Видео:Двойной интеграл (ч.25). Вычисление в полярных координатах. Высшая математика.Скачать
Нахождение площади фигуры, которую можно представить как разность двух криволинейных секторов
Пусть фигура в полярной системе координат ограничена лучами φ = α , φ = β и непрерывными и неотрицательными на интервале φ ∈ α ; β функциями r = p 1 ( φ ) и r = p 2 ( φ ) , причем p 1 ( φ ) ≤ p 2 ( φ ) для любого угла φ = φ 0 ∈ α ; β .
Находим площадь фигуры по формуле S ( G ) = 1 2 ∫ α β p 2 2 ( φ ) — p 1 2 ( φ ) d φ .
Действительно, в силу свойства аддитивности площади, фигуру G можно представить как разность двух криволинейных секторов G 2 и G 1 .
Тогда площадь фигуры G равна разности площадей этих криволинейных секторов:
S ( G ) = S ( G 2 ) — S ( G 1 ) = 1 2 ∫ α β p 2 2 ( φ ) d φ — 1 2 ∫ α β p 1 2 ( φ ) d φ = = 1 2 ∫ α β p 2 2 ( φ ) — p 1 2 ( φ ) d φ
Последний переход возможен в силу третьего свойства определенного интеграла.
Необходимо вычислить площадь фигуры, которая ограничена линиями φ = 0 , φ = π 3 , r = 3 2 , r = 1 2 φ в полярной системе координат.
Решение
Построим заданную фигуру на графике.
Очевидно, что r = 3 2 больше r = 1 2 φ для любого φ ∈ 0 ; π 3 . Применяем полученную формулу для вычисления площади фигуры:
S ( G ) = 1 2 ∫ 0 π 3 3 2 2 — 1 2 φ 2 d φ = 1 2 ∫ 0 π 3 9 4 — 2 — 2 φ d φ = = 1 2 · 9 4 φ + 1 2 · 2 — 2 φ ln 2 0 π 3 = 1 2 · 9 4 φ + 1 ln 2 · 1 2 2 φ + 1 0 π 3 = = 1 2 · 9 4 · π 3 + 1 ln 2 · 1 2 2 · π 3 + 1 — 9 4 · 0 + 1 ln 2 · 1 2 2 · 0 + 1 = = 1 2 · 3 π 4 + 2 — 2 π 3 — 1 2 · ln 2
Ответ: S ( G ) = 1 2 · 3 π 4 + 2 — 2 π 3 — 1 2 · ln 2
А теперь рассмотрим пример, когда фигура ограничена линиями, заданными в прямоугольной системе координат. Площадь такой фигуры намного проще вычислять, используя полярные координаты.
Необходимо вычислить площадь фигуры, которая ограничена прямыми линиями y = 1 3 x , x = 3 x , окружностями ( x — 2 ) 2 + ( y — 3 ) 2 = 13 , ( x — 4 ) 2 + ( y — 3 ) 2 = 25 .
Решение
В прямоугольной системе координат вычислить площадь полученной фигуры можно, но дело это долгое и хлопотное. Намного проще перейти к полярной системе координат, воспользовавшись формулами перехода.
x = r · cos φ y = r · sin φ ⇒ y = 1 3 x ⇔ r · sin φ = r · cos φ 3 ⇔ t g φ = 1 3 ⇔ φ = π 6 + πk y = 3 x ⇔ r · sinφ = 3 · r · cosφ ⇔ tgφ = 3 ⇔ φ = π 3 + πk ( x — 2 ) 2 + ( y — 3 ) 2 = 13 ⇔ x 2 + y 2 = 4 x + 6 y ⇔ r = 4 cosφ + 6 sinφ ( x — 4 ) 2 + ( y — 3 ) 2 = 25 ⇔ x 2 + y 2 = 8 x + 6 y ⇔ r = 8 cosφ + 6 sinφ
Функция r = 8 cos φ + 6 sin φ больше r = 4 cos φ + 6 sin φ для любого φ ∈ π 6 ; π 3 . Вычисляем площадь фигуры в полярных координатах:
S ( G ) = 1 2 ∫ π 6 π 3 8 cos φ + 6 sin φ 2 — 4 cos φ + 6 sin φ 2 d φ = = 1 2 ∫ π 6 π 3 ( 48 cos 2 φ + 48 cos φ · sin φ ) d φ = = 24 ∫ π 6 π 3 cos 2 φ d φ + 24 ∫ π 6 π 3 cos φ · sin φ d φ = = 12 ∫ π 6 π 3 ( 1 + cos 2 φ ) d φ + 24 ∫ π 6 π 3 sin φ d ( sin φ ) = = 12 · φ + 1 2 sin ( 2 φ ) π 6 π 3 + 12 · sin 2 φ π 6 π 3 = = 12 · π 3 + 1 2 sin 2 π 3 — π 6 + 1 2 sin 2 π 6 + 12 · sin 2 π 3 — sin 2 π 6 = = 12 · π 6 + 12 · 3 2 2 — 1 2 2 = 2 π + 6
Видео:Математика это не ИсламСкачать
Как вычислить площадь фигуры в полярных координатах
с помощью интеграла?
Это, пожалуй, одно из самых популярных приложений определённого интеграла после вычисления площади в прямоугольных координатах и объёма тела вращения. Для изучения материалов урока необходимо понимать, что такое полярные координаты и знать полярные уравнения простейших линий. Разумеется, потребуются навыки нахождения неопределённого и определённого интеграла, поэтому если у вас появятся технические трудности и/или недопонимание по ходу изложения, пожалуйста, начните с базовых статей.
Всё очень и очень напоминает привычную задачу нахождения площади. Полярным аналогом криволинейной трапеции является криволинейный сектор.
Рассмотрим некоторую функцию , заданную в полярной системе координат, которая принимает неотрицательные значения на отрезке и непрерывна на нём. Криволинейным сектором называется ФИГУРА, ограниченная отрезками лучей и графиком :
Площадь криволинейного сектора рассчитывается по формуле . Как видите, перед интегралом ставится дробь , сама функция возводится в квадрат, а интегрирование осуществляется по переменной «фи».
В качестве демонстрационного примера, вычислим площадь круга, ограниченного окружностью с центром в полюсе, радиуса 2. Очевидно, что и по формуле:
Сравните с Примером № 4 урока Эффективные методы решения определённых интегралов, где площадь этого же круга рассчитана в прямоугольной системе координат 😉
Бензопила заправлена и прогрета:
Вычислить площадь фигуры, ограниченной линией
Решение: первый и главный совет:
Экономьте время на чертеже. Проще всего прибегнуть к программным средствам, например, воспользоваться моим графопостроителем в полярных координатах. Клик-клик – и готово, далее быстренько перерисовываем чертёж в тетрадь или при электронном способе оформления копируем его в Вёрд.
Если есть возможность быстро построить фигуру – всегда её стройте (даже если этого не требуется по условию). Чертёж усиливает задание, кроме того, как и при нахождении площади в прямоугольных координатах, даёт отличную возможность прикинуть по клеточкам правдоподобность получившегося результата.
Если же инструментальные средства по той или иной причине недоступны, и вы совсем не представляете, как выглядит фигура, то придерживайтесь противоположной тактики:
По возможности чертёж выгоднее НЕ строить вообще.
Ручное построение чертежа в полярных координатах – процесс длительный и трудоёмкий, за это время можно успеть выпить банку, а то и две пива решить несколько, а то и целый десяток интегралов. Исходя из личного опыта, могу с уверенностью сказать, что в простых примерах, как этот, построение чертежа на чистовике скорее не оправдано, чем оправдано. Конечно, если по условию требуется выполнить чертёж (или его дополнительно требует преподаватель), то никуда не деться, но по умолчанию гораздо рациональнее попытаться отделаться чисто аналитическим решением.
В нашем случае задача облегчается ещё и тем, что для любого «фи»,
а значит, угол, как и в примере с площадью круга, принимает все значения от до . По рабочей формуле:
Стандартно понижаем степень с помощью известной тригонометрической формулы:
Ничего сложного тут нет, главное, не допустить ошибку в преобразованиях и вычислениях.
В частности, не забывайте, что площадь не может быть отрицательной, и если у вас вдруг получится такой результат, ищите оплошность.
Ответ:
Забавно, что можно вообще не иметь ни малейшего представления о том, какую фигуру ограничивает линия . Однако студенческое счастье переменчиво и всегда нужно быть готовым к худшему сценарию:
Как построить фигуру, если её НАДО построить, но под рукой нет программы?
Не унываем, схематический чертёж отнимет не так уж много времени. Такой версии, скорее всего, будет достаточно, ведь это не главная часть задания.
В который раз взглянем на график косинуса:
на интервале косинус принимает такие же по модулю значения, что и на интервале , только со знаком «минус». Поскольку у нас косинус возводится в квадрат, то фигура, ограниченная графиком функции , будет состоять из двух одинаковых и симметричных относительно полюса частей, вершины которых, очевидно, находятся в следующих точках:
Так же очевидно, что при полярный радиус равен нулю.
Давайте найдём дополнительную опорную точку. Напрашивается угол в 45 градусов:
В силу симметрии линии:
Как называется эта фигура, я не знаю, …сейчас немного проанализировал, …какая-то алгебраическая кривая 6-го порядка:
По ходу пьесы всячески приветствуется импровизация, так, в данном примере уместно найти значение для более точного построения чертежа.
Ну и, конечно же, не забываем по клеточкам оценить, что полученное значение площади похоже на правду.
Вычислить площадь фигуры, ограниченной линией
Это пример для самостоятельного решения. Примерный образец чистового оформления задачи в конце урока.
Если на пути встаёт область определения, то блицкриг тоже вполне осуществим:
Вычислить площадь фигуры, ограниченной линией
Решение: данное уравнение задаёт двухлепестковую полярную розу, область определения: . Лепестки одинаковы, поэтому достаточно найти площадь одного из них, а результат удвоить. Удваивать рекомендую сразу же (в конце задания забывается просто «на ура»):
(*) На данном шаге использовали чётность подынтегральной функции на симметричном относительно нуля отрезке интегрирования. С геометрической точки зрения это означает, что лепесток розы симметричен относительно своей центральной оси. В предыдущих двух примерах фигуры тоже были симметричными, но, как ни странно, в рассматриваемом типе задач излишнее обмусоливание данного факта зачастую только удлиняет решение.
Ответ:
Если считать, что уравнение задано в обобщенных полярных координатах, то данная роза будет иметь 4 лепестка, и, соответственно, результат следует умножить ещё на два. Но, как я уже советовал в курсе аналитической геометрии, осмотрительнее рассматривать классику, где полярный радиус неотрицателен.
Следующие короткие задачи предназначены для самостоятельного решения:
Вычислить площадь фигуры, ограниченной линией, заданной уравнением в полярной системе координат.
Вычислить площадь фигуры, ограниченной линией, заданной уравнением в полярной системе координат.
Кривая 4-го примера называется лемнискатой Бернулли, в 5-м примере дана трёхлепесковая роза. Напоминаю, что если есть возможность быстро построить чертеж, то его лучше построить. А здесь они, к слову, быстро строятся и вручную.
После интенсивной разминки на опушке надеваем хоккейную маску и с воодушевлением углубляемся в лес за новыми жертвами:
Вычислить площадь фигуры, ограниченной линиями .
Решение: в условии даны две линии, и здесь хоть о чертеже и молчок, но без него уже трудно. Какую кривую задаёт уравнение ? В статье о полярных координатах мы подробно разбирали и строили график полярной розы с лепестками на промежутках . Знак «минус» всё перевернёт с ног на голову (а если академичнее – отобразит симметрично относительно полярной оси и её продолжения) и лепестки розы расположатся в секторах .
Уравнение же значительно проще, оно определяет типовую окружность:
Искомая фигура заштрихована синим цветом. Чтобы вычислить её площадь, нужно из площади круга вычесть площадь одного лепестка розы.
1) Вычислим площадь круга. Пределы интегрирования , по формуле:
Результат, не забываем, легко проверяется с помощью школьной формулы.
2) Вычислим площадь лепестка розы, расположенного в пределах :
3) Площадь искомой фигуры:
… математический каламбур прямо какой-то =)
Ответ: , что весьма правдоподобно
В рассмотренном примере фигурировали разные отрезки интегрирования, и площадь выразилась разностью . Однако на практике данные промежутки чаще совпадают и по причине линейности интеграла формула упрощается. Сформулирую правило в общем виде: если функции непрерывны и неотрицательны на некотором отрезке , и при этом , то площадь фигуры, ограниченной отрезками лучей и данными линиями, равна:
Нетрудно уловить, что общий мотив похож на вычисление площади в прямоугольных координатах по формуле , где из «верхней» функции, вычитается «нижняя».
Следующий баян лучше не пропускать:
Вычислить площадь фигуры, ограниченной линиями .
Краткое решение с чертёжом в конце урока.
И в заключение ещё одна распространённая разновидность задачи, после чего будет специальное предложение для самых увлечённых маньяков:
Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах
.
Решение: с художеством особых проблем не возникает, однако фигура, ограниченная окружностями , не определена однозначно и поэтому в условии наложено дополнительное ограничение на угол , из которого следует, что необходимо вычислить заштрихованную площадь:
Сначала разберёмся, как найти луч , по которому пересекаются окружности. Очень просто – приравниваем функции и решаем уравнение:
Сбрасываем косинус на нижний ярус левой части и превращаем дробь в тангенс:
Таким образом:
Из чертежа следует, что площадь фигуры нужно искать как сумму площадей:
1) На промежутке фигура ограничена отрезком луча и дугой окружности (внимание!!) (синяя штриховка).
2) На промежутке фигура ограничена тем же отрезком луча и дугой окружности (зелёная штриховка).
Интегралы настоятельно рекомендую считать РАЗДЕЛЬНО – риск допустить ошибку по невнимательности как никогда велик. Только что ещё раз убедился на собственном опыте, пытаясь оформить решение «одной строкой».
3) А вот теперь пользуемся аддитивностью площади:
Ответ:
Аналогичное задание для самостоятельного решения:
Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах
. Выполнить чертёж.
Заметьте, что условие данной задачи требует выполнения чертёжа (даже если Вы с ходу представили, как выглядит фигура и даже если мысленно всё рассчитали). Всегда обращайте внимание на формулировку. Примерный образец решения совсем близко.
Надо сказать, что я разобрал не самые сложные задания, дабы не отпугнуть «чайников». Дополнительные примеры можно найти в решебнике Л. А. Кузнецова (Раздел IV — Интегралы, Задача 16). Но таки приберегите немного сил на вычисление площадей фигур, ограниченных параметрически заданными линиями =)
И удачи вам в пятницу тринадцатого!
Решения и ответы:
Пример 2: Решение: найдём область определения: – любое.
Площадь фигуры вычислим по формуле , в данном случае :
Ответ:
Примечание: линия, которой ограничена данная фигура, называется кардиоидой, чертёж можно посмотреть в Примере № 6 урока Как построить график в полярной системе координат?
Пример 4: Решение: область определения: . Фигура состоит из двух одинаковых частей. Используя формулу , вычислим площадь на отрезке , результат удвоим:
Ответ:
Пример 5: Решение: данное уравнение задаёт трёхлепестковую розу, область определения:
Используя формулу , вычислим площадь фигуры на отрезке , результат утроим:
Ответ:
Пример 7: Решение: выполним чертёж:
На отрезке , таким образом:
Ответ:
Пример 9: Решение: найдём угловое направление пересечения окружностей:
По условию , поэтому рассматриваем противоположнонаправленный луч . Выполним чертёж:
1) На промежутке фигура ограничена отрезком луча и дугой окружности .
2) На промежутке фигура ограничена отрезком луча и дугой окружности .
3) Площадь фигуры:
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
💡 Видео
Видеоурок по математике "Вычисление площади фигуры"Скачать
Почему площадь круга Pi*r^2. Популярные способы доказательстваСкачать