площадь черной поверхности ежесекундно

Видео:Мнимые числа реальны: #13 Поверхности Римана [Welch Labs]Скачать

Мнимые числа реальны: #13 Поверхности Римана [Welch Labs]

Площадь черной поверхности ежесекундно

абсолютно черное тело

Абсолютно черное тело имеет температуру Т1 = 400 К. Какова будет температура T2 тела, если в результате нагревания поток излучения увеличится в n = 10 раз?

Из смотрового окошка печи за 5 мин излучается 6,3 ккал. Площадь окошка равна 3 см 2 . Принимая, что окошко излучает, как абсолютно черное тело, определить температуру печи.

Нить лампы накаливания излучает как абсолютно черное тело, имеющее температуру 2418 К. Вычислить число фотонов, испускаемых с 38 см 2 поверхности за одну секунду, полагая, что средняя энергия кванта излучения равна 3,62kT.

Вычислите энергию (в МДж), которая излучается с 1 м 2 поверхности Солнца за время, равное 425 мин., принимая температуру его поверхности равной примерно 5644 К и полагая, что Солнце излучает как абсолютно черное тело.

Оцените среднюю температуру поверхности Земли, считая, что она излучает как абсолютно черное тело. Энергия этого излучения находится в равновесии с получаемой от Солнца. Приток теплоты от внутренних источников планеты не учитывать. Радиус Солнца принять равным 6,9·10 8 м, температуру его поверхности — 5652 К, расстояние Земля — Солнце — 1,5·10 11 м.

Спираль лампы накаливания, рассчитанная на напряжение 3 В, имеет длину 10 см и диаметр 49 мкм. Полагая, что спираль излучает как абсолютно черное тело, определите длину волны (в мкм), соответствующую максимуму энергии в спектре излучения. Лампа рассеивает 7% потребляемой мощности. Удельное сопротивление спирали принять равным 55 нОм·м.

Определить энергетическую освещенность поверхности абсолютно черного тела лучами, падающими на него перпендикулярно, если давление, производимое излучением, равно 10 мкПа.

Котел с водой при 97 градусах излучает энергию на руку наблюдателя, на поверхности которой температура 27 градусов. Во сколько раз больше получит кусок льда такой же поверхности на таком же расстоянии? Излучение считать близким к излучению абсолютно черного тела.

В излучении абсолютно черного тела, поверхность которого 25 см 2 , максимум энергии приходится на длину волны 680 нм. Сколько энергии излучает 1 см2 этого тела за 1 с и какая потеря его массы за 1 с вследствие излучения?

Найти температуру Т печи, если известно, что излучение из отверстия в ней площадью S = 6,1 см 2 имеет мощность N = 34,6 Вт. Излучение считать близким к излучению абсолютно черного тела.

Какую мощность излучения N имеет Солнце? Излучение Солнца считать близким к излучению абсолютно черного тела. Температура поверхности Солнца Т = 5800 К.

Мощность излучения абсолютно черного тела N = 34 кВт. Найти температуру Т этого тела, если известно, что его поверхность S = 0,6 м 2 .

Абсолютно черное тело имеет температуру 500 К. Какова будет температура тела, если в результате нагревания поток излучения увеличится в 5 раз? Исходя из формулы Планка, изобразить графически начальный и конечный спектры излучения.

При остывании абсолютно черного тела максимум его спектра излучения сместился на 500 нм. На сколько градусов остыло тело? Начальная температура тела 2000 К.

За какое время остынет до температуры окружающей среды tкон = –20 °С шар радиусом R = 2 см из материала плотностью ρ = 8600 кг/м 3 и теплоемкостью λ = 395 Дж/(кг·К), находящийся при температуре tнач = 50 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

Какое количество энергии излучает Солнце в 1 минуту? Температуру поверхности солнца считать равной 5800 К, радиус Солнца 6,95·10 8 м. Солнце считать абсолютно черным телом.

Принимая Солнце за абсолютно черное тело, определить температуру его поверхности, если длина волны, на которую приходится максимум излучения λmax = 0,5 мкм.

Интенсивность излучения некоторой звезды, радиус которой 6·10 8 м, вблизи некоторой планеты, находящейся на расстоянии 12·10 10 м от звезды, составляет 2·10 3 Вт/м 2 . Определить среднюю температуру поверхности планеты, если радиус планеты 6·10 6 м. Планету считать абсолютно черным телом. σ = 5,67·10 –8 Вт/(м 2 ·К 4 ), b = 2,9·10 –3 м·К.

Распределение энергии в спектре излучения абсолютно черного тела в зависимости от частоты ν для температур Т1 и T22 > T1) верно представлено на рисунке под номером .
площадь черной поверхности ежесекундно

Распределение энергии в спектре излучения абсолютно черного тела в зависимости от частоты ν для температур Т1 и T22 > T1) верно представлено на рисунке под номером .
площадь черной поверхности ежесекундно

Можно считать, что Солнце — это абсолютно черное тело, у которого максимум излучательной способности приходится на длину волны 0,5 мкм. Какую равновесную температуру будет иметь тонкая черная пластинка, нагревающаяся от солнечного излучения установленная перпендикулярно падающим лучам в вакууме на расстоянии от солнца равном радиусу орбиты 1) Меркурия, 2) Земли, 3) Марса?

Полная энергия, излучаемая Солнцем за одну секунду, составляет примерно 7,5·10 26 Дж. Рассматривая Солнце как абсолютно чёрное тело, определить температуру его поверхности. Радиус Солнца принять равным 6,9·10 8 м.

Во сколько раз увеличится мощность теплового излучения абсолютно черного тела, если максимум излучательной способности тела переместится от 700,0 до 600,0 нм?

Во сколько раз увеличится мощность теплового излучения абсолютно черного тела, если максимум испускательной способности тела переместится с 862 нм до 791 нм?

Полная энергия, излучаемая Солнцем за одну секунду, составляет примерно 8,7·10 26 Дж. Рассматривая Солнце как абсолютно черное тело, определить температуру его поверхности. Радиус Солнца принять равным 6,9·10 8 м.

Из отверстия в печи площадью 62 см 2 излучается 104 кДж энергии за 7 мин. Принимая, что регистрируемое излучение по своему спектральному составу близко к излучению абсолютно черного тела, определить длину волны, на которую приходится максимум энергии излучения. Ответ дать в нанометрах.

Абсолютно черное тело, имеющее форму шара с диаметром D = 10 см поддерживается при некоторой постоянной температуре Т. Найти эту температуру, если известно, что мощность Р излучения тела составляет 60 кДж/мин.

Определить давление P лучей солнца на поверхность абсолютно черного тела, помещенного на таком же расстоянии от Солнца, как и Земля. Падение лучей — нормальное. Интенсивность солнечной радиации за пределами земной атмосферы I = 1,35·10 3 Дж/(м 2 ·с).

Котел с водой при 97°С излучает энергию на руку наблюдателя, на поверхности которой температура 27°С. Во сколько раз больше получит кусок льда такой же поверхности на том же расстоянии? Излучение считать близким к излучению абсолютно черного тела.

В откачанный сосуд, температура стенок которого поддерживается вблизи 0° К, поместили медный шарик радиуса r0 = 1 см, нагретый до температуры Т = 1500° К. Считая шарик абсолютно черным телом определить за какое время его температура уменьшится в n = 5 раз. Теплоемкость меди c = 0,38 Дж/(г·град), ρ = 8,9 г/см 3 .

Определить температуру теплопроводящей сферы, помещенной за пределами атмосферы Земли, считая ее АЧТ, а излучение равновесным. Интенсивность солнечной радиации принять равной І = 1,8 кВт/м 2 .

Абсолютно черное тело нагрели до некоторой температуры. Если тело охлаждается на 1000 градусов, то изменение длины волны, на которую приходится максимум излучательной способности, равно 1 мкм. Определить начальную температуру тела.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 1,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 2,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 3,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,00 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 25 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 210 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 30 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 220 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 40 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 240 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 50 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 250 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 60 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 260 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 70 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 270 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 80 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 280 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 100 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 290 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 120 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 300 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 5,50 мс. Считать, что шар излучает как абсолютно черное тело.

В спектре излучения огненного шара радиуса R = 150 м, возникающего при взрыве, максимум энергии излучения приходится на длину волны λ = 320 нм. Определить энергию, излучаемую поверхностью шара за время τ = 4,00 мс. Считать, что шар излучает как абсолютно черное тело.

Абсолютно черное тело нагрели до некоторой температуры. Если тело охлаждается на 1000 градусов, то изменение длины волны, на которую приходится максимум излучательной способности, равно 1 мкм. При охлаждении на 2500 градусов изменение длины волны станет равным 8 мкм. Определить начальную температуру тела.

В какой области спектра лежат максимумы излучения чернокожего африканца, и человека с белой кожей? Считать, что они излучают как абсолютно черные тела.

Абсолютно черное тело имеет температуру t1 = 100°С. Какова будет температура t2 тела, если в результате нагревания поток излучения увеличится в четыре раза?

Полагая, что Солнце обладает свойствами абсолютно черного тела, определить интенсивность I солнечного излучения вблизи Земли за пределами ее атмосферы (эта интенсивность называется солнечной постоянной). Температура солнечной поверхности T = 5785 К.

Спектр излучения абсолютно черного тела имеет вид несимметричной колоколообразной кривой. Тело имело температуру T, затем его нагрели до температуры T1, при которой площадь под кривой увеличилась в 16 раз. Температура T1 равна .

В вакууме находятся сильно разогретый шар радиусом 5 см и на расстоянии 2 м от его центра небольшой зачерненный кубик, расположенный так, что одна из его граней перпендикулярна падающему от шара излучению. Установившаяся температура кубика равна 202 К. Считая, что нагрев кубика обусловлен только падающим на него излучением от шара, найти температуру последнего. На какую длину волны приходится максимум энергии излучения шара? Шар считать абсолютно черным телом.

На рисунке представлено распределение энергии в спектре излучения абсолютно черного тела в зависимости от длины волны излучения для температур T1 и T2. При условии, что Т2 > Т1, верная зависимость rλ,T(λ) приведена на рисунке под номером .
площадь черной поверхности ежесекундно

За какое время остынет до температуры окружающей среды tкон = 0 °С шар радиусом R = 5 см из материала плотностью ρ = 2,6·10 3 кг/м 3 и теплоемкостью λ = 896 Дж/(кг·К), находящийся при температуре tнач = 500 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = 0 °С шар радиусом R = 10 см из материала плотностью ρ = 7,9·10 3 кг/м 3 и теплоемкостью λ = 500 Дж/(кг·К), находящийся при температуре tнач = 100 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = -10 °С шар радиусом R = 1 см из материала плотностью ρ = 8,4·10 3 кг/м 3 и теплоемкостью λ = 386 Дж/(кг·К), находящийся при температуре tнач = 100 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = 20 °С шар радиусом R = 3 см из материала плотностью ρ = 7,2·10 3 кг/м 3 и теплоемкостью λ = 230 Дж/(кг·К), находящийся при температуре tнач = 200 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = 0 °С шар радиусом R = 8 см из материала плотностью ρ = 11,3·10 3 кг/м 3 и теплоемкостью λ = 126 Дж/(кг·К), находящийся при температуре tнач = 100 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = -40 °С шар радиусом R = 10 см из материала плотностью ρ = 7,7·10 3 кг/м 3 и теплоемкостью λ = 460 Дж/(кг·К), находящийся при температуре tнач = 40 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = -20 °С шар радиусом R = 5 см из материала плотностью ρ = 7·10 3 кг/м 3 и теплоемкостью λ = 391 Дж/(кг·К), находящийся при температуре tнач = 0 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = 10 °С шар радиусом R = 2 см из материала плотностью ρ = 8,4·10 3 кг/м 3 и теплоемкостью λ = 386 Дж/(кг·К), находящийся при температуре tнач = 100 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

За какое время остынет до температуры окружающей среды tкон = 0 °С шар радиусом R = 10 см из материала плотностью ρ = 2,6·10 3 кг/м 3 и теплоемкостью λ = 896 Дж/(кг·К), находящийся при температуре tнач = 300 °С. Шар можно считать абсолютно черным телом; остывание происходит только за счет излучения.

Из смотрового окошечка печи площадью S = 6 см 2 излучается поток ФЭ = 2040 Дж/мин. Считая излучение близким к излучению абсолютно черного тела, определить температуру Т печи и частоту, на которую приходится максимум излучения.

Во сколько раз увеличится мощность излучения абсолютно черного тела, если максимум излучательной способности переместится от красной границы видимого света (760 нм) к его фиолетовой границе (380 нм)?

В излучении абсолютно чёрного тела, поверхность которого 25 см 2 , максимум излучательной способности приходится на длину волны 680 нм. Определить мощность излучения (световой поток). Какому количеству фотонов, излучаемых телом за 1 секунду с 1 см 2 поверхности, соответствует такой световой поток монохроматического излучения с длиной волны 680 нм?

Видео:Почему площадь сферы в четыре раза больше её тени? [3Blue1Brown]Скачать

Почему площадь сферы в четыре раза больше её тени? [3Blue1Brown]

На каждый квадратный сантиметр черной поверхности ежесекундно падает 2,8*10^17 квантов

Видео:62. Площадь поверхности конусаСкачать

62. Площадь поверхности конуса

Условие задачи:

На каждый квадратный сантиметр черной поверхности ежесекундно падает 2,8·10 17 квантов излучения с длиной волны 400 нм. Какое давление создает это излучение?

Задача №11.1.36 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

(S=1) см 2 , (tau=1) с, (N=2,8 cdot 10^), (lambda=400) нм, (p_-?)

Видео:Что там за пределами Солнечной системы?Скачать

Что там за пределами Солнечной системы?

Решение задачи:

Давление, которое оказывает излучение на черную поверхность (p_), будем искать по следующей формуле:

В этой формуле (F) – сила давления излучения на черную поверхность, (S) – площадь освещаемой излучением черной поверхности.

Так как каждый квант излучения, имеющий импульс (p_0), полностью поглощается поверхностью (так как она черная), то изменение импульса каждого кванта при таком поглощении равно (p_0). Так как в пучке квантов содержатся (N) квантов, то общее изменение импульса пучка равно (Np_0). Точно такое же изменение импульса будет испытывать и черная поверхность, поскольку на систему не действуют внешние силы. Силу давления света на черную поверхность (F) будем находить из второго закона Ньютона, записанного в общем виде:

Учитывая вышесказанное, имеем:

Запишем формулу длины волны де Бройля (lambda):

В этой формуле (h) – это постоянная Планка, равная 6,62·10 -34 Дж·с. Из формулы (3) выразим импульс одного фотона (p_0):

Полученное выражение подставим в формулу (2), тогда:

А уже это выражение подставим в формулу (1):

Задача решена в общем виде, подставим данные задачи в полученную формулу и посчитаем численный ответ задачи:

Видео:Площадь сферы внутри цилиндра. Поверхностный интегралСкачать

Площадь сферы внутри цилиндра. Поверхностный интеграл

Ответ: 4,6 мкПа.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Видео:Определение длин отрезков на топографическом планеСкачать

Определение длин отрезков на топографическом плане

Площадь черной поверхности ежесекундно

Квантовая природа света и волновые свойства частиц

Монохроматический пучок света (λ = 490 нм), падает по нормали к поверхности, производит давление р = 4,9 мкПа. Какое число фотонов I падает в единицу времени на единицу площади этой поверхности? Коэффициент отражения света ρ = 0,25

Дано:

λ = 490 нм =490 · 10 -9 м

р = 4,9 мкПа = 4,9 10 -6 н/м 2

Решение:

Тогда число фотонов, падающих ежесекундно па пластину

🎬 Видео

Путешествие за пределы ВселеннойСкачать

Путешествие за пределы Вселенной

Земля: Биография планеты. Фильм National GeographicСкачать

Земля: Биография планеты. Фильм National Geographic

Путешествие на край ВселеннойСкачать

Путешествие на край Вселенной

Космос: пространство, время, гравитация, инопланетяне | Документальный фильм Би-би-сиСкачать

Космос: пространство, время, гравитация, инопланетяне | Документальный фильм Би-би-си

11 класс, 17 урок, Площадь поверхности конусаСкачать

11 класс, 17 урок, Площадь поверхности конуса

ПУТЕШЕСТВИЕ ЗА ПРЕДЕЛЫ СОЛНЕЧНОЙ СИСТЕМЫ | ГДЕ НАХОДЯТСЯ ВСЕ ЗОНДЫ?Скачать

ПУТЕШЕСТВИЕ ЗА ПРЕДЕЛЫ СОЛНЕЧНОЙ СИСТЕМЫ | ГДЕ НАХОДЯТСЯ ВСЕ ЗОНДЫ?

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Аналитическая геометрия, 8 урок, Поверхности второго порядка

Большие объекты в космосе. Документальный фильмСкачать

Большие объекты в космосе. Документальный фильм

СБОРНИК - ПУТЕШЕСТВИЕ ПО САМЫМ ИНТЕРЕСНЫМ СПУТНИКАМ СОЛНЕЧНОЙ СИСТЕМЫ [ФИЛЬМ]Скачать

СБОРНИК - ПУТЕШЕСТВИЕ ПО САМЫМ ИНТЕРЕСНЫМ СПУТНИКАМ СОЛНЕЧНОЙ СИСТЕМЫ [ФИЛЬМ]

Взаимодействие Земли и Солнца. Документальный фильмСкачать

Взаимодействие Земли и Солнца. Документальный фильм

Путешествие по Млечному ПутиСкачать

Путешествие по Млечному Пути

Крупнейшая морская нефтедобывающая платформа в России // Анатомия МонстровСкачать

Крупнейшая морская нефтедобывающая платформа в России // Анатомия Монстров

Доисторическая Земля. Путешествие в прошлоеСкачать

Доисторическая Земля. Путешествие в прошлое

Урок 416. Интерференция в тонких пленкахСкачать

Урок 416. Интерференция в тонких пленках
Поделиться или сохранить к себе: