относительно устойчивые площади земной коры

Видео:Строение земной коры на территории России. Видеоурок 5. География 8 классСкачать

Строение земной коры на территории России. Видеоурок 5. География 8 класс

Строение и динамика литосферы

Литосфера (земная кора) (от греч. litos – камень и сфера) включает в себя недра и рассматривается как минеральная часть системы. Это внешняя сфера «твердой» Земли, иерархически включающая следующие подразделения: формации, стратиграфические комплексы, группы, системы, серии, свиты, литологические слои.

Внутренняя сфера Земли наблюдениям почти недоступна. Еще до бурения глубоких и сверх­глубоких скважин (самая глубокая из них – Кольская скважина – до­стигла рекордной глубины – более 12 км) сведения о недрах получа­ли при изучении глубоких слоев Земли, вышедших на поверхность вследствие денудации (разрушения) вышележащих слоев.

Современные представления о строении и составе внутренних оболочек Земли основываются на комплексных геофизических исследованиях недр. Главным из них является сейсмический метод (от греч «сейсма» – сотрясение).

Каково же внутреннее строение Земли? По данным сейсмического зондирования, исходя из скоростей прохождения сейсмических волн, выделяют три главные сферы Земли: земная кора, мантия, внешнее и внутреннее ядро. И сферы отделены одна от другой поверхностями раздела, в которых резко меняются величины скоростей прохождения сейсмических волн. Разрез земного шара с указанием мощности оболочек представлен на рис. 10. Земная кора имеет толщину 5–40 км, мантия – 2900 км, внешнее ядро – 2220 км, радиус внутреннего ядра равен 1255 км.

Ученые считают, что течение расплавленного железа во внешней части ядра работает как «динамо-машина» и является причиной существования магнитного поля Земли. Внешнее ядро обладает свойствами жидкости, а внутреннее ядро сложено твердым веществом.

Земная кора – тонкая в планетарном масштабе, но важная как источник минеральных ресурсов или полезных ископаемых (рис.10). Земная кора в классическом варианте отождествляется с понятием литосферы, т.е. самой верхней каменной оболочкой Земли. Ее верхняя граница проводится по поверхности суши и дну морей и океанов, а нижняя – по поверхности Мохоровичича (названа в честь югославского геофизика-сейсмолога) или Мохо (рис. 11). Граница эта находится на глубинах 30–80 км в области континентов, 15–50 км в области океанов. Земная кора, располагающаяся выше границы Мохо, слагается всеми известными горными породами: магматическими, осадочными и метаморфическими. Средняя мощность земной коры – 20 км; под океанами – 10 км, а под материками – 43 км.

относительно устойчивые площади земной коры

Рис. 11. Внутреннее строение Земли

По последним научным данным принято считать, что земная кора является лишь частью литосферы. Литосфера включает земную кору и самую верхнюю, наиболее упругую часть мантии мощностью около 100 км.

Литосферу непосредственно подстилает более пластичный и подвижный слой верхней мантии – астеносфера (от греч. «астенос» – «слабый». Здесь породы находятся в расплавленном состоянии, которые могут медленно течь. Глубина ее залегания 150 км. Именно литосфера и астеносфера являются главными проявлениями тектонических процессов. Движение литосферы выражается в перемещении отдельных ее участков в вертикальном (поднятия и опускания) или горизонтальном направлении по пластичному слою мантии – астеносфере. В связи с этим получает признание новейшая геологическая теория, рассматривающая литосферу Земли как систему подвижных блоков – литосферных плит.

Земная кора в горизонтальном направлении, в свою очередь, делится на два типа: континентальная и океаническая (рис. 12). Первая состоит из трех слоев: «осадочного», «гранитного» и «базальтового». Океаническая кора рассматривается как двухслойная (без «гранитной» части) мощностью 10 км. Земная кора состоит на 95 % из изверженных пород (базальтов и гранитов), на 5 % – из осадочных пород. Наиболее важной формой химических элементов в земной коре являются минералы. относительно устойчивые площади земной коры

Рис. 12. Разрез земной коры (литосферы)

Примечание: Цифры означают среднюю плотность материала, г/см 3

относительно устойчивые площади земной коры

Рис. 7. Строение земной коры материков и океанов

1 – вода; 2 – осадочные породы; 3 – гранитометаморфический слой; 4 – базальтовый слой; 5 – мантия Земли (М – поверхность Мохоровичича); б – участки мантии, сложенные породами повышенной плотности; 7 – участки мантии, сложенные породами пониженной плотности; 8 – глубинные разломы; 9 – вулканический конус и магматический ка­нал.

Накопление какого-либо элемента выше его среднего содержания ведет к образованию месторождения полезного ископаемого.

Рассмотрим химический и минералогический состав глубинного вещества Земли – земной коры, мантии и ядра. Расслоение Земли, как и других планет земной группы на металлическое ядро и силикатную оболочку, обусловлено различиями их физических свойств (плотности и температуры плавления) силикатной и металлической фаз.

Земная кора непосредственно доступна для геологических наблюдений и хорошо известна. Средняя мощность земной коры около 20 км, но под континентами она увеличивается до 37 км, под океанами составляет 6–7 км. Последние исследования геофизиков позволили выявить, что кора толще всего там, где вздымаются огромные горные хребты. Чем выше гора, тем глубже в недра уходят ее корни.

Мы знаем, что континентальная и океаническая земная кора отличаются не только по толщине, но и по составу. Континентальная часть земной коры состоит из трех слоев: осадочного, гранитного и базальтового, океаническая – из осадочного и базальтового (рис. 12).

На континентах широко распространены осадочные, магматические и метаморфические породы.

Магматические породы рассматриваются в качестве первичного вещества земной коры. Среди магматических пород преобладают граниты и базальты, различающиеся различным содержанием кремнезема. В современном представлении именно с формированием магматических расплавов в верхней мантии и поступлением их к поверхности связывают образование земной коры как наружной твердой оболочки. Базальты – это темно-зеленая или даже черная силикатная порода, содержащая кальций, натрий, магний и железо.

Магматические процессы продолжаются и поныне, т.к. на поверхность Земли поступают летучие соединения, которые формируют земную атмосферу и гидросферу. Состав коры Венеры, Марса и Луны тот же, что и Земли. Преобладают, прежде всего, базальты.

Осадочные породы составляют не более 10 % массы всей земной коры. В осадочной толще основную массу составляют глины, глинистые сланцы, пески и песчаники. Они залегают на так называемом кристаллическом основании, сложенном приблизительно равным количеством магматических и метаморфических породам. Осадочные породы произошли в результате выветривания магматических пород на поверхности континентов.

Метаморфические породы произошли в результате погружения магматических пород в область повышенных температур и давлений. Среди метаморфических пород преобладают кристаллические сланцы и гнейсы.

Отсюда наиболее распространенные минералы в земной коре – полевые шпаты (граниты и базальты) и кварц (граниты). Совместно с глинистыми минералами (продуктами выветривания полевых шпатов) и слюдами (продуктами метаморфического изменения глинистых минералов) они составляют более 90 % всей массы земной коры. В земной коре (силиале) распространены химические элементы, имеющие низкую температуру плавления: алюминий, кремний, натрий, калий, кальций, литий и другие.

Возраст у континентальной коры превышает 3 млрд. лет, у океанической – не более 150–170 млн. лет.

Мантия представлена ультраосновными породами, главным образом перидотитом. Они обеднены кремнеземом, но обогащены железом и марганцем. Главными минералами перидотита являются оливин

(Mg2 SiO4) и пироксен (CaMgSi2 O6). Это зеленоватые минералы, силикаты магния и железа. Мантия занимает до 82 % объема нашей планеты.

Ядро. Современная оценка химического вещества ядра Земли следующая: при давлениях свыше 1,5 Мбар железо, никель и сера находятся в жидкой форме, но это только во внешней части ядра. А его внутренняя часть, как бы «желток» планеты, состоит из железоникелевого сплава и ведет себя как «твердь». Температура здесь около 10 000 0 С, а давление в центре достигает 3 млн. атмосфер. На внешнюю часть ядра приходится около 30 % всей массы планеты, а на внутреннюю – 1,7 % .

Вывод о дифференцировании (расслоении) вещества, а также представления о формировании земной коры и атмосферы в процессе выплавления и дегазации можно считать общим принципом формирования планет Земной группы.

Земные недра никогда не бывают спокойными. Под влиянием происходящих в них процессов поверхность планеты деформируется: под­нимается и опускается, растягивается и сжимает­ся, покрывается сетью трещин, создавая основу рельефа Земли.

Тектонические движения – это любые механические перемещения внутри земной коры, которые приводят к изменению ее строения.

Еще в 1758 году М.В. Ломоносов в своем труде «О слоях Земли» (1763) впервые дал определение тектоническим движениям и выделил их два типа: колебательные и складчатые. «Существуют нечувствительные долговременные земной поверхности повышения и понижения и резкие быстрые трясения Земли». Примеров этому достаточно много: Скандинавское побережье поднимается, а Голландия и Германия опускаются; долина реки Рейн на 500 км прослеживается в Северном море, а полуостров Канин Нос (Белое море) во времена Ивана Грозного был островом.

В современной геологии также выделяются два основных типа тектонических движений: эпейрогенические (или колебательные) и орогенические (складчатые).

Эпейрогенические движения – медленные вековые поднятия и опускания земной коры, не вызывающие изменения первичного залегания пластов. Эти вертикальные движения имеют колебательный характер и обратимы, т.е. поднятие может смениться опусканием.

Колебательные или эпейрогенические (от греч. «эпейрос» – континент, «генезис» – рождение) движения поднимают или опускают огромные уча­стки суши и океанов. Они определяют очертания морей и континентов. Опустившаяся территория затапливается морем – происходит морская транс­грессия. Поднятие вызывает регрессию – отсту­пание моря. Недаром они названы колебательными – крупные опускания и подня­тия происходят не сразу. В одном и том же месте они неоднократно сменяют друг друга, и только через длительный промежуток времени становится ясно, какие процессы являются преобладающими на данной территории.

Орогенические движения происходят в двух направлениях – горизонтальном и вертикальном. Первое приводит к смятию пород и образованию складок и надвигов, т.е. к сокращению земной поверхности. Вертикальные движения приводят к поднятию области проявления складкобразования и возникновению горных сооружений.

Орогенические движения протекают значительно быстрее, чем колебательные. Они сопровождаются активным эффузивным и интрузивным магматизмом, а также метаморфизмом. В последние десятилетия эти движения объясняют столкновением крупных литосферных плит, которые перемещаются в горизонтальном направлении по астеносферному слою верхней мантии. В современной структуре Земли выделяют семь основных плит: Североамериканскую (на рис. 13 не обозначена), Южноамериканскую, Евразиатскую, Африканскую, Индийско-Австралийскую, Антарктическую, Тихоокеанскую. Эти плиты, кроме Тихоокеанской, включают как континентальные, так и океанические участки (рис. 13).

Как в пределах континентов, так и под дном морей и океанов выделяются подвижные участки (складчатые области) и относительно устойчивые площади (платформы) земной коры.

К подвижным поясам континентов относятся молодые горные сооружения, такие как Альпы, Карпаты, Кавказ, Памир, Гималаи и т.д. В океанах подвижными поясами называют срединно-океанические хребты, а также островные дуги (Курильская, Японская) и глубоководные желоба. В их пределах зафиксированы самые глубокие области Земли, глубина которых превышает 8000 м.

относительно устойчивые площади земной коры

Рис. 13. Литосферные плиты Земли

Одной из форм проявления разрывных нарушений являются разломы (дизъюнктивы) в земной коре. Они распространены повсеместно, обуславливая мозаично-блоковую структуру земной коры. Длина разломов по простиранию может варьироваться в широких пределах: до 40 км – локальные, от 40 до 80 км – региональные, от 80 до 1000 км – глобальные.

На континентах к устойчивым областям относятся платформы – Восточно-европейская, Сибирская, Африканская, Австралийская и другие платформы.

Сложное движение плит в земной коре, их силовое взаимодействие, взаимовлияние оболочек Земли и околоземного пространства, влияние лунно-солнечных приливов (отливов) и других планетарных сил и процессов, колебание силы и направленности магнетизма и электрических полей Земли приводит к крайней нестабильности строения и поведения земной коры. Земная кора в целом, как система, и ее отдельные участки (массивы горных пород) находятся в предельно напряженном состоянии. Кроме этого, все тектонические процессы (землетрясения, вулканизм, сейсмичность и т.д.) связаны с полем напряжения в земной коре. Наибольшее число землетрясений наблюдается в пределах Тихоокеанского (75 %) и Альпийского (23 %) поясов.

Изучение распространения действующих вулканов показывает, что вулканическая деятельность приурочена к тектонически активным участкам земного шара – областям современного горообразования и развития глубинных разломов (рис. 14). Из анализа приведенной карты следует, что большая часть действующих в настоящее время вулканов (около 60 %) сосредоточена на побережье Тихого океана, в зоне так называемого Тихоокеанского «огненного» кольца.

Вулканы известны здесь на Аляске и западном побережье Северной Америки, далее цепь их протягивается вдоль Тихоокеанского побережья Южной Америки до Огненной Земли. На западном побережье Тихого океана вулканы непрерывной цепочкой тянутся от Новой Зеландии через острова Фиджи, Соломоновы до Новой Гвинеи, далее через Филиппинские острова, Японию и Курильские острова на Камчатку, где сосредоточено большое количество действующих и потухших вулканов. В северной части Тихого океана известны многочисленные вулканы Алеутских островов, которые протягиваются от Камчатки к Аляске, как бы замыкая «огненное» кольцо.

Другой зоной повышенной интенсивности вулканической деятельности является Альпийский пояс. Эта зона прослеживается в широтном направ­лении от Альп через Апеннины, Кавказ до гор Малой Азии. Здесь расположены такие вулканы, как Везувий, Этна, вулканы Липарских островов и Эгейского моря, Эльбрус, Казбек, Арарат и др. (рис. 14).

относительно устойчивые площади земной коры

Рис. 14. Схема размещения областей активной тектонической и вулканической деятельности а – действующие вулканы; б – основные области землетрясений

Здесь характерны сжимающие горизонтальные напряжения. Горизонтальные сжатия в пределах Курильских и Японских островных дуг оценивают в 200–400 МПа. В геосинклинальных (переходных) зонах наблюдают сильные сжатия в тех местах, где океаническая, более тяжелая и холодная, погружается (субдуцирует) под континентальную (материковую), более легкую. риковая кора) также подвержены сжатию. Обстановки растяжения сосредоточены в узких рифтовых зонах (срединно-океанических хребтах) либо морских впадинах типа Японского, Эгейского морей. Участки земной коры, охваченные растяжением, не превышают 2 % общей площади земной коры. Вся остальная часть ее находится в состоянии сжатия. Всё это подчёркивает крупнейшие неоднородности структуры Земли и её важнейшую структурную ассиметрию.

В горных областях наблюдается давление, вызванное весом вышележащих пород. Изучение напряженного состояния земной коры на всю глубину и массивы горных пород имеет не только научное, но и практическое значение. Геодинамика также рассматривает вопросы безопасного и эффективного освоения недр и земной поверхности с учетом характера и интенсивности техногенного воздействия на массив горных пород и современного геодинамического состояния литосферы. Применение метода геодинамического районирования позволяет решать задачи резкого снижения аварийности при эксплуатации протяженных нефтегазопроводов, подземных (шахт) и наземных сооружений, в том числе атомных станций и мест захоронения ядерных и других отходов в сейсмически активных регионах планеты. Данные о напряженном состоянии массивов горных пород важны при строительстве и эксплуатации всех горнодобывающих предприятий. Кроме этого, горные цепи, фиксирующие зоны столкновения континентальных участков плит, являются преградой на пути движения воздушных масс. Поэтому в предгорьях происходит разгрузка циклонических потоков в виде ливней. Рельеф гор обуславливает высотную зональность распределения температур и давления и, таким образом, распределяет процессы выветривания, усиливая воздушную и водную эрозионную деятельность.

Техногенная деятельность человека – строительство водохранилищ, откачка нефти, газа, воды, разработка глубоких карьеров – нарушают естественные поля напряжений и существующее динамическое равновесие в земной коре. Поэтому необходима постановка мониторинговых наблюдений за современными техногенными полями и развитием современных природных процессов и явлений.

Таким образом, земная кора, поверхность которой является основной ареной развития природных процессов, представлена системами разнородных блоков. В глобальной картине структуры Земли выступают две крупнейшие неоднородности (блока): Тихоокеанская и Альпийская, а среди основных тектонических элементов (плит) – океаны и континенты. Блоки земной коры отделены друг от друга межблоковыми зонами – разломами, зонами повышенной трещиноватости. Благодаря перемещениям блоков относительно друг друга с разной скоростью и направленностью происходит саморазвитие литосферы. Динамика литосферных плит отражена в проявлении опасных эндогенных процессов – сейсмичности, вулканизма, дегазации мантии.

Для оценки опасности речных наводнений рассмотрим важный экзогенный процесс ­– деятельность поверхностных текучих вод, генезис и строение речных долин равнинных рек. Поверхностные текучие воды являются одним из главнейших агентов разрушения (денудации) поверхностиЗемли. При этом водные по­токи изменяют поверхность Земли, одновре­менно разрушая существующий рельеф и создавая множество новых форм. Текучие воды разрушают горные породы, пе­ремещают обломочный материал вниз по те­чению и накапливают (аккумулируют) его на более низких уровнях.

Таким образом, геологическая деятельность поверхностных текучих вод складывается из: 1 – смыва; 2 – размыва (эрозии); 3 – транспортировки продуктов разрушения; 4 – аккумуляции продуктов разрушения. Наукой, которая изучает формы земной поверхности (рельеф) является геоморфология.

Геологическая деятельность постоянных водных потоков – рек проявляется в следующем.

Реки разнообразны по протяженности. Некоторые почти от края до края пересека­ют континенты, достигая нескольких тысяч километров в длину (например, Миссисипи, которая вместе с Миссури считается самой длинной рекой в мире – более 7000 км), длина других – несколько сот или десятков километров.

Реки, берущие начало в высоких горах, питаются обычно водой та­ющих ледников и снежников; реки, зарож­дающиеся в зоне с умеренным климатом, как равнинные, так и горные, питаются подзем­ными водами, атмосферными осадками и талыми снеговыми водами. В зависимости от питания находятся и режимы рек, высота меженного (среднего) уровня воды и паводкового подъема в результате ливней или таяния снега. Питание рек зависит от сезонов года и положением реки в географической зоне. Зайков Б.Д. (1984) все многообразие режимов рек подразделил на три основные группы:

1) реки с весенним половодьем;

2) реки с половодьем в теплую часть года;

3) реки с паводочным (дождевым) режимом.

На территории России распространены реки с весенним половодьем, где преобладает снеговой тип питания. Реки западносибирского типа отличаются относительно невысоким и растянутым весенним половодьем, повышенным летне-осенним стоком и низкой зимней меженью. Например, река Васюган, впадающая в Обь. Для рек первых двух групп характерны ежегодно повторяющиеся, примерно в одни и те же сроки, большие подъемы воды и низкая водность в остальное время года.

Поверхностные воды изучает наука гидрология.

Работа рек заключается в размыве (эрозии), переносе и отложении материала – аллювия. Весь материал, который переносится реками и затем откладывается, называется аллювием (лат. «аллювио» – нанос, намыв).

В результате всех этих процессов формируется речная долина. Ее образование происходит под влиянием климатических условий, от которых зависит количество воды в реке, и тектонических движений, создающих укло­ны русла и влияющих на энергию реки. Под действием глубинной (донной) эрозии долины углубляются, под действием боковой – расширяются. При этом продукты разрушения пород переносятся на различные рассто­яния тремя способами:

а) воло­чением или перекатыванием по дну (самые крупные обломки);

б) в виде взвеси;

в) в растворенном состоянии.

Влекомые по дну обломки и взвешенные частицы называют твердым стоком реки. Обломочный материал, перемещаемый рекой по дну, усиливает глубинную эрозию, а сам постепенно измельчается, истирается и окатывается – образуются валуны, галька, гравий, песок. Размер и масса обломков, перекатываемых по дну, пропорциональна шестой степени скорости течения. При скорости течения 0.3 м/сек переносится по дну мелкий песок, а при скорости 2.0 м/сек – крупная галька (до 10 см).

Количество переносимого ма­териала во взвешенном состоянии определя­ется скоростью и турбулентностью течения. От количества взвешенного материала зависит мутность воды. Во время половодий, когда скорость и турбулентность потока резко возрастают, река переносит наибольшее ко­личество материала в виде взвеси, главным образом, глинистых частиц и песка, отчего вода становится мутной. Зимой, когда воды становится меньше, скорость течения пада­ет, количество взвешенных частиц резко уменьшается, и вода становится прозрачной.

Значительное количество минерального вещества (до 40%) переносится в растворенном состоянии. В раство­ренном состоянии перемещаются карбонаты Са, Мg, Nа (CaCO3, MgCO3, NaCO3), кремнезем, а также легкорастворимые соли (NaCl, KCl, MgSO4, CaSO4).

Таким образом, аллювий может переносится тремя способами:

а) влекомым – тащится и перекатывается по дну русла;

б) во взвешенном состоянии;

в) в растворенном виде.

В начале формиро­вании речной долины (молодой возраст реки) преобладает глубин­ная эрозия. Наиболее глубокая часть доли­ны – тальвег – заполняется самым грубым аллювием. Русло реки обычно спрямленное (рис. , а), а в горных реках – часто с по­рогами и водопадами. В таких случаях го­ворят, что продольный профиль реки (про­филь водной поверхности) крутой, невыработанный.

Постепенно в нижнем течении реки ук­лон продольного профиля становится мень­ше, происходит выполаживание дна долины. Начинает дей­ствовать боковая эрозия (средний возраст реки), в результате чего склоны долины подмываются, разрушаются, образующийся аллювий перекрывает плоское дно долины. На этой стадии русло обычно имеет извилистый характер, образуя излу­чины – меандры (рис. , б).

в
б
а

относительно устойчивые площади земной коры

Рис. 15 . Основные типы речных русел: а – спрямленное;

б – меандрирующее; в– разветв­ленное

При поступлении в долину большого ко­личества обломочного материала, что обычно происходит во время таяния снега, а в го­рах – ледников, начинается его аккумуля­ция. При этом русло разветвляется на мно­жество рукавов или проток (рис.15, в), из-за чего образующийся аллювий имеет различ­ную крупность обломков. Это старый возраст реки.

Таким образом, по форме русла реки можно определить, ка­кой процесс имеет место во всей долине или на отдельных ее участках.

Формирование поймы и терраспроисходит следующим образом:Вдо­лине реки, помимо ее русла, в котором об­разуется русловой аллювий, обычно выде­ляются пойма и террасы.

Пойма – самая низкая часть долины, заливаемая в поло­водье. Проследить ее формирование мож­но на примере меандрирующей реки (рис. 16).

Рис. 16. Схема формирования меандр и стариц 1– возвышенный берег; 2 – перекат; 3 – отмель (низкий берег); 4 – плесы (обычно находится ниже максимальной кривизны); 5 – сближенные части крыльев в излучины, подверженные прорыву; 6 – прежнее русло; 7 – место прорыва между крыльями излучины; 8 – занесенная отложениями часть прежнего русла; 9 – стрежень (форватер); точками показаны отмели

относительно устойчивые площади земной коры

Вода в реке вследствие инерции стремится дви­гаться прямолинейно, поэтому на поворо­тах струя с максимальной скоростью уда­ряет в вогнутый берег, разрушает его, в результате чего он становится обрывистым и постепенно отступает. Этот процесс у круп­ных равнинных рек может происходить с катастрофической скоростью – до 40–50 м/ год, приводя к разрушению прибрежных строений. У под­мываемого берега возникают наиболее глу­бокие участки реки – плесы. Течения пе­реносят вымываемый материал ниже по реке, откладывают его, образуя перекаты – наиболее мелкие участки дна. Часть мате­риала от подмываемого берега переносит­ся к противоположному, выпуклому бере­гу излучины, где он откладывается, образуя прирусловую отмель. Процесс подмыва вог­нутых берегов и наращивания выпуклых идет на всем участке меандрирования. В результате меандры увеличиваются в раз­мерах и постепенно смещаются вниз по течению, а долина расширяется.

Состав руслового аллювия у равнинных рек обычно гравийно-песчаный. В пе­риоды паводков русловой аллювий перекры­вается тонкими горизонтально-слоистыми супесчано-суглинистыми отложениями – пойменным аллювием.

На реках со слабым уклоном вершины соседних меандров могут сблизиться настоль­ко, что узкий перешеек между ними в одно из половодий прорывается, и русло реки спрямляется. Отрезанный от основного русла меандр, или излучина, превращается в старицу. В ней накапливаются тонкие или­стые осадки, а затем, при постепенном ее зарастании, образуется торф.

Аллювий равнинных рек обычно представ­лен тремя разновидностями или фациями: русловой, пойменной и старичной.

Когда в реке увеличиваются скорость течения и количество воды, что связано с понижением ба­зиса эрозии в результате неотектонических движений, река прорезает пойму, вре­зается в коренные породы и формирует новую долину на более низком гипсомет­рическом уровне. В результате пойма оказывается прорезанной и уже не заливает­ся водой. Она превратилась в террасу.

Тер­раса – это выровненная площадка в доли­не реки, созданная деятельностью водного потока, представляющая бывшую пойму (рис. 17). Формирование террас свидетель­ствует о циклическом развитии речных долин, связанном с проявлениями но­вейших тектонических движений, также с циклическими изменениями климата. Основ­ных – цикловых – террас в долинах рек насчитывается от двух до шести.

В зависимости от того, на какую глубину река врезается в пойму при превращении ее в террасу, выделяются:

· аккумулятивные террасы (террасы накопления), сложенные аллювием;

· эрозионноаккумулятивные террасы (смешанные), сложенные в верхней части аллювием, а в нижней части уступа выходят коренные породы или цоколь;

· эрозионные террасы (террасы размыва), выработанные в корен­ относительно устойчивые площади земной коры

Рис. 17. Образование надпойменных террас при омоложении реки: а– образование поймы; б – первый цикл эрозии; в – второе омоложение; I, II – надпоймен- ные террасы реки

ных породах и лишенные аллювия.

относительно устойчивые площади земной коры

Рис. 18. Схема строения речной долины, в которой развиты пойма

и речные террасы

1 – русловой аллювий; 2 – пойменный аллювий; 3 – коренные породы; 4 – формы рельефа: пойма (П), терра­са, ее номер и тип: 1 – аккумулятивная, П – эрозионно-аккумулятивная, Ш эрозионная; 5 – элементы строе­ния террас: а – площадка, б – уступ, в – бровка, г – тыловой шов

Речные долины редко имеют симметрич­ное строение, при котором пойма и терра­сы одинаково развиты на обоих берегах. Еще М. В. Ломоносов писал: «У знатных рек одна сторона нагорная, другая луговая, т.е. одна состоит из берегов крутых и высоких, другая из низких и песчаных, а, следовательно, оные реки с одной стороны приглубы, с другой отмелы».

Эта асимметрия долин может быть объяс­нена влиянием планетарных причин, в част­ности вращением Земли. В результате у рек, текущих в меридиональном направлении, в Северном полушарии подмываются и стано­вятся более крутыми правые берега, а у рек Южного полушария более крутые левые берега. Подтверждением этого правила, на­званного законом Бэра-Бабине, служат долины многих крупных рек: Волги, Дона, Днепра, Енисея, Томи и др.

Речные долины являются тонким индикатором тектонических движений, приводящих к поднятиям и опус­каниям земной поверхности. Изменения уклонов поверхности, вызываемые этими движениями, приводят к изменениям ско­ростей водных потоков и их энергии, что немедленно отражается на динамике рус­ловых процессов, строении поймы и террас, мощности и составе отложений.

В устьевых частях некоторых рек у впадения их в море или озеро возникают своеобразные конусы выноса – дельты. Дельта в плане имеет форму треу­гольника, одной вершиной вдающегося в до­лину. В дельте происходит ветвление русла на ряд проток и рукавов, веером расходящихся от его вершины и самостоятельно впадающих в море или озеро. Между протоками распо­лагаются многочисленные острова. На форми­рование дельты и слагающих ее осадков ока­зывают большое влияние морские приливы и отливы, а также сгонно-нагонные изменения уровня воды, обусловленные ветром. Так, ветры, дующие навстречу течению реки, при­водят к его замедлению, поднятию уровня и выходу реки из берегов. Примером этого слу­жит р. Нева, от периодических наводнений которой страдал Санкт-Петербург до того, как построили защитную дамбу. Общая мощность дельтовых отложений у разных рек различна, наибольшая

(до 600 м) – у североамериканской р. Мисси­сипи, впадающей в Мексиканский залив.

На морских побережьях, испытывающих тектонические опускания, устьевые части рек иногда затоплены морем и превраще­ны в заливы, глубоко вдающиеся в доли­ны рек. На северных побережьях морей, где действуют приливы и отливы, они называ­ются эстуариями. На северном побережье Сибири их называют губами (Обская губа, Енисейская губа). Там же, где нет прили­вов и отливов, образуются широкие, менее глубокие заливы – лиманы.

Русла многих современных рек имеют свои продолжения на окраинах материков – шель­фах (например, рр. Обь и Енисей).

Видео:Формирование земной коры на территории России. Видеоурок по географии 8 классСкачать

Формирование земной коры на территории России. Видеоурок по географии 8 класс

Как называются древнейшие устойчивые участки литосферных плит

Видео:"Строение земной коры", §3 География 7 класс ч.1, Домогацких.Скачать

"Строение земной коры", §3 География 7 класс ч.1, Домогацких.

Платформы

Территория страны сформировалась из платформ и складчатых поясов. Платформы — наиболее устойчивые участки литосферы.

Фундамент (нижний ярус платформы) образуют сильно смятые метаморфизированные породы. На фундаменте формируется осадочный чехол из горизонтально залегающих пород. В зависимости от времени образования фундамента платформы делятся на древние (Восточно-Европейская, Сибирская) и молодые (Западно-Сибирская). Три эти платформы, выраженные в рельефе равнинами, занимают основную часть территории России. В ряде мест фундамент платформ выходит на поверхность. Эти участки называются щитами. На Восточно-Европейской платформе имеются Балтийский и Украинский шиты, а на Сибирской — Алданский и Анабарский.

Складчатые пояса, возникающие в наиболее подвижных участках земной коры, представляют собой смятые в складки метаморфизированные горные породы. При этом складки могут быть изогнуты книзу (синклиналь) или кверху (антиклиналь).

Области с равнинным рельефом приурочены к платформам — устойчивым участкам земной коры, где складкообразовательные процессы уже давно закончились. Наиболее древние из платформ — Восточно-Европейская и Сибирская. В основании платформ лежит жесткий фундамент, сложенный магматическими и сильно метаморфизированными породами докембрийского возраста (гранитами, гнейсами, кварцитами, кристаллическими сланцами). Фундамент обычно покрыт чехлом горизонтально залегающих осадочных пород, и только на Сибирской платформе

(Среднесибирское плоскогорье) значительные площади заняты вулканическими породами — сибирскими траппами.

Выходы фундамента, сложенного кристаллическими породами, на поверхность называются щитами. В нашей стране известны Балтийский щит на Русской платформе и Аланский щит на Сибирской платформе.

Горные области отличаются более сложным геологическим строением. Горы образуются в наиболее подвижных участках земной коры, где в результате тектонических процессов горные породы сминаются в складки, разбиваются разломами и сбросами. Эти тектонические структуры возникли в различное время — в эпохи палеозойской, мезозойской и кайнозойской складчатости. Самые молодые горы нашей страны расположены на Дальнем Востоке, а именно на Курильских островах и Камчатке. Они входят в состав обширного тихоокеанского вулканического пояса, или Тихоокеанского огненного кольца, как его называют. Они отличаются значительной сейсмичностью, частыми сильными землетрясениями, наличием действующих вулканов.

Геосинклиналь— линейная область высокой подвижности и проницаемости земной коры. Геосинклиналь характеризуется значительной амплитудой скорости и контрастности вертикальных и горизонтальных движений, сильной магматической активностью, преобладанием погружений и накоплением мощных толщ морских, а иногда частично и континентальных осадочных и вулканогенных пород. С позиций тектоники литосферных плит геосинклинали соответствует активная окраина континента (эвгеосинклиналь) или его пассивная окраина (миогеосинклиналь).

Все материки в то или иное время прошли в своем развитии стадию геосинклинали. Прошли ее и различные территории нашей страны. На завершающей стадии развития геосинклинали происходит складкообразование, которое сопровождается вертикальными поднятиями, внедрением интрузий, часто интенсивным проявлением вулканизма (все это происходит при столкновении литосферных плит). С магматическими процессами связано оруденение, образование местонахождений рудных ископаемых. Так в результате завершения развития геосинклинали возникают складчатые области (пояса).

Самые древние складчатые области формировались на территории России в архее и протерозое (2600-500 млн лет назад). Они сложены породами допалеозойского возраста. Именно они образуют нижний структурный ярус платформ — их складчатый фундамент.

Платформы — устойчивые участки земной коры, характеризующиеся относительно небольшой подвижностью. Для них характерны слабое расчленение на области поднятий и погружений, значительно меньшие, чем в геосинклиналях, амплитуды колебательных движений, меньшее и качественно иное развитие магматических процессов.

На территории России находятся две древних платформы — Восточно-Европейская и Сибирская. Обе они имеют двухъярусное строение: складчатый фундамент из кристаллических и магматических пород архейско-протерозойского возраста и палеозойско-кайнозойской осадочный чехол. Осадочные породы чехла залегают спокойно, обычно субгоризонтально. Осадконакопление прерывалось в периоды поднятий и сменялось процессами сноса.

Восточно-Европейская платформа ограничена на востоке Уральскими складчатыми сооружениями, на юге — молодой Скифской плитой, примыкающей к складчатым сооружениям Кавказа, на севере продолжается под водами Баренцева моря, а на западе простирается далеко за границы России. В ее пределах имеются два щита, один из которых — Балтийский — заходит на территорию Кольского полуострова и Карелии, второй — Украинский — полностью находится за пределами Россия. Остальное пространство платформы: занимает Русская плита.

Неглубокое залегание фундамента характерно для Воронежской антеклизы (первые сотни метров) и некоторых положительных структур Волго-Уральского свода. В синеклизах (Московская, Печорская, Балтийская) фундамент опущен на 2-4 км. Наибольшая глубина залегания фундамента характерна для Прикаспийской синеклизы (15-20 км).

Сибирская платформа протянулась от подножья Саянских гор почти до берегов Северного Ледовитого океана и от Енисея до Лены, в основном совпадает с границами среднесибирского плоскогорья. Иркутская область занимает южную часть Сибирской платформы, именуемую в литературе Иркутским амфитеатром. В строении амфитеатра выделяется кристаллический фундамент и осадочный чехол.

Кристаллический фундамент платформы неоднороден, в основном он состоит из древнейших малоподвижных глыб, сложенных породами архейского, протерозойского возраста.

Осадочный чехол Сибирской платформы составляет второй этаж. Он является результатом длительного, сравнительно спокойного развития платформы, что подтверждается почти горизонтальным залеганием горных пород.

Вместе с тем Сибирская платформа во многом отличается от Восточно-Европейской. Если Восточно-Европейская платформа представляет собой единую изометричную глыбу, то Сибирская состоит из двух неравных частей — Ангарско-Анабарской и Алданской, которые, по всей вероятности, являлись самостоятельными древними платформами и были соединены полосой байкальско-каледонской складчатости. В таком случае Сибирская платформа как единая тектоническая структура существует лишь со среднего палеозоя (Е.Е. Милановский, 1987).

Другое существенное отличие состоит в том, что в пределах Сибирской платформы в пермо-триасе проявился платформенный трапповый магматизм. Образования трапповой формации, представленные мощными лавовыми покровами, пластовыми и секущими интрузиями, слагают верхнюю часть разреза огромной Тунгусской синеклизы и смежных с ней территорий.

Как называются самые беспокойные подвижные области земной коры 1) рельеф 2) складчатые области 3) платформа 4) сейсмические пояса укажите внутренний процесс, который влияет на формирование рельефа 1)деятель текучих вод 2) движение плит литосферы 3) выветривание 4) все варианты ответа верны Как называется совокупность неровностей земной поверхности, различающихся по возрасту, происхождению и размерам?

Видео:Движения земной коры | География 6 класс #15 | ИнфоурокСкачать

Движения земной коры | География 6 класс #15 | Инфоурок

Как называются древнейшие устойчивые участки литосферных плит?

В чем причины разнообразия рельефа Земли?

1-4) 2-2) 3-Совокупность всех неровностей поверхности земной коры называют Рельефом. 4-Взаимодействие внутренних и внешних сил — основная причина разнообразия рельефа. Рельеф Земли постоянно изменяется в результате одновременного воздействия на него внутренних и внешних сил.

Внутренние силы проявляются в процессах движения литосферы, внедрения вещества мантии в земную кору или его излияния на поверхность Земли. Действие этих сил вызвано перемещением вещества во всей мантии. Движения литосферы перемещают пласты горных пород, изменяют строение земной коры, а значит, и ее рельеф. Различают медленные вертикальные перемещения, которые происходят повсеместно, и горизонтальные движения, наиболее значительное из которых — движение литосферных плит. В результате их движения образуются самые крупные формы рельефа — выступы материков и впадины океанов, горные пояса, огромные равнины.

Внешние силы действуют на поверхности Земли. Свою энергию они получают от Солнца, а также от силы тяжести и жизнедеятельности организмов. Внешние силы — это выветривание, работа текучих вод, ветра, подземных вод, ледников, морского прибоя, деятельность человека.

Эти силы разрушают горные породы и выносят продукты разрушения с одних, более высоких, участков земной поверхности на другие, где происходит их отложение и накопление рыхлого материала. В разрушении и выравнивании рельефа на суше особенно велика роль выветривания.

Внутренние и внешние силы действуют одновременно. При этом внутренние силы в основном создают крупные формы рельефа, внешние в основном их разрушают, а их созидательная сила проявляется в образовании небольших по размерам форм рельефа.

На равнинах это холмы, речные долины, овраги, в горах — осыпи, небольшие хребты, ущелья, скалы причудливых очертаний и т. п. Изменение рельефа Земли происходит непрерывно. Меняются очертания гор, их высота, выравниваются холмы, даже, хотя и очень медленно, изменяются очертания материков.

Устойчивые участки земной коры, которые покоятся на древнем (докембрийском) кристаллическом фундаменте, называются древними платформами.Территория России расположена на двух древних платформахВ некоторых местах фундамент платформ (многометровая толща гранита) выходит прямо на поверхность, по нему можно ходить.

Такие места называются щиты. Щиты занимают небольшие участки платформ. Чаще всего фундамент скрыт под толщей более молодых слоев земной коры. Эти части платформ называются плитами.Молодая платформа — тоже устойчивый участок земной коры, но фундамент ее моложе (сформировался в палеозойское время). Как считают геологи, когда-то две литосферные плиты с древними платформами столкнулись и прочно «склеились» между собой. Место их «склейки» — Уральские горы, а между Уральскими горами и Сибирской платформой сформировалась еще одна молодая платформа.

Она вся покрыта толстым слоем осадочных пород. Ее поверхность — плоская равнина. За те миллионы лет, пока формируется осадочный чехол платформ, магма в разных местах через трещины фундамента проникает в толщу земной коры.

На территории Сибирской платформы она образовала траппы — лавовые покровы или озера застывшей лавы. Как образуются траппы хорошо показано в мультимедийном учебнике при приближении Сибирской платформы.

На Восточно-Европейской платформе траппы не образовались, но встречаются интрузии — массивы магмы, не прорвавшиеся к поверхности и застывшие в толще земной коры. На геологических разрезах и картах они обозначаются красным цветом, как и фундамент. Иногда разрушение горных пород сверху приводит к тому, что остывшие и раскристаллизовавшиеся интрузии выходят на поверхность.

Платформы — это относительно устойчивые участки земной коры. Возникают они на месте существовавших ранее складчатых сооружений высокой подвижности, образующихся при замыкании геосинклинальных систем, путём последовательного их превращения в тектонически стабильные участки.

Характерной чертой строения всех литосферных платформ Земли является их строение из двух ярусов или этажей.

Нижний структурный этаж называется также фундаментом.

Сложен фундамент из сильно дислоцированных метаморфизованных и гранитизированных пород, пронизанных интрузиями и тектоническими разломами.

По времени образования фундамента платформы делятся на древние и молодые.

Древние платформы, составляющие к тому же ядра современных материков и называемые кратонами, имеют докембрийский возраст и сформировались в основном к началу позднего протерозоя.

Древние платформы разделяются на 3 типа: лавразийский, гондванский и переходный.

К первому типу относятся Северо-Американская (Лавренция), Восточно-Европейская и Сибирская (Ангарида) платформы, образованные в результате распада суперконтинента Лавразия, который в свою очередь образовался после распада протоконтинента Пангея.

Ко второму: Южно-Американская, Африкано-Аравийская, Индостанская, Австралийская и Антарктическая.

Антарктическая платформа до палеозойской эры была разделена на Западную и Восточную платформу, которые объединились лишь в палезойской эре. Африканская платформа в архее была разделена на протоплатформы Конго (Заир), Калахари (Южно-Африканская), Сомали (Восточно-Африканская), Мадагаскар, Аравия, Судан, Сахара.

После распада суперконтинента Пангея африканские протоплатформы, за исключением Аравийской и Мадагаскарской, объединились. Окончательное объединение произошло в палеозойскую эру, когда Африканская платформа превратилась в Африкано-Аравийскую платформу в составе Гондваны.

К третьему промежуточному типу относятся платформы небольшого размера: Сино-Корейская (Хуанхэ) и Южно-Китайская (Янцзы), которые в разное время являлись как частью Лавразии, так и частью Гондваны.

В фундаменте древних платформ участвуют архейские и раннепротерозойские образования.

В пределах Южно-Американской и Африканской платформ часть образований относится к верхнепротерозойскому времени. Образования глубокометаморфизованы (амфиболитовая и гранулитовая фации метаморфизма); главную роль среди них играют гнейсы и кристаллические сланцы, широко распространены граниты.

Поэтому такой фундамент называют гранитогнейсовым или кристаллическим.

Молодые платформы сформировались в палеозойское или позднекембрийское время, они окаймляют древние платформы. Их площадь лишь 5% от всей площади континентов. Фундамент платформ сложен фанерозойскими осадочно-вулканическими породами, испытавшими слабый (зеленосланцевая фация) или даже только начальный метаморфизм. Встречаются блоки более глубокометаморфизованных древних, докембрийских, пород. Граниты и другие интрузивные образования, среди которых следует отметить офиолитовые пояса, играют подчиненную роль в составе.

В отличие от фундамента древних платформ фундамент молодых именуется складчатым.

В зависимости от времени завершения деформаций фундамента разделение молодых платформ на эпибайкальские (наиболее древние), эпикаледонские и эпигерцинские.

К первому типу относятся Тимано-Печорская и Мизийская платформы Европейской России.

Ко второму типу относятся Западно-Сибирская и Восточно-Австралийская платформы.

К третьему: Урало-Сибирская, Среднеазиатская и Предкавказская платформы.

Между фундаментом и осадочным чехлом молодых платформ часто выделяется промежуточный слой, к которому относятся образования двух типов: осадочное, молассовое или молассово-вулканическое выполнение межгорных впадин последнего орогенного этапа развития подвижного пояса, предшествовавшего образованию платформы; обломочное и обломочно-вулканогенное выполнение грабенов, образованных на стадии перехода от орогенного этапа к раннеплатформенному

Верхний структурный этаж или платформенный чехол сложен неметаморфизованными осадочными породами: карбонатными и мелководными песчано-глинистыми в платформенных морях; озёрными, аллювиальными и болотными в условиях гумидного климата на месте бывших морей; эоловыми и лагунными в условиях аридного климата.

Породы залегают горизонтально с размывами и несогласием в основании. Мощность осадочного чехла обычно 2-4 км.

В ряде мест осадочный слой в результате поднятия или размыва отсутствует и фундамент выходит на поверхность. Такие участки платформ называют щитами. На территории России известны Балтийский, Алданский и Анабарский щиты.

В пределах щитов древних платформ выделяют три комплекса пород архейского и нижнепротерозойского возраста:

Зеленокаменные пояса, представленные мощными толщами закономерно перемежающихся пород от ультраосновных и основных вулканитов (от базальтов и андезитов к дацитам и риолитам) к гранитам. Их протяжённость до 1000 км при ширине до 200 км.

Комплексы орто- и пара- гнейсов, образующие в сочетании с гранитными массивами поля гранитогнейсов.

Гнейсы отвечают по составу гранитам и обладают гнейсовидной текстурой.

Гранулитовые (гранулито-гнейсовые) пояса, под которыми понимаются метаморфические породы, сформировавшиеся в условиях средних давлений и высоких температур (750-1000° C) и содержащие кварц, полевой шпат и гранат.

Участки где фундамент перекрыт всюду мощным осадочным чехлом называют плитами. Большинство молодых платформ по этой причине называют иногда просто плитами.

Наиболее крупными элементами платформ являются синеклизы: обширные впадины или прогибы с углами наклона всего в несколько минут, что соотвествуют первым метрам на километр движения.

В качестве примера синеклиз можно назвать Московскую с центром вблизи одноименного города и Прикаспийскую в пределах Прикаспийской низменности. В противоположность синеклизам крупные поднятия платформ называются антеклизами. На Европейской территории России известны Белорусская, Воронежская и Волго-Уральская антеклизы.

Крупными отрицательными элементом платформ являются также грабены или авлакогены: узкие протяжённые участки, линейно ориентированные и ограниченные глубинными разломами.

Бывают простыми и сложными. В последнем случае наряду с прогибами в их состав входят поднятия — горсты. Вдоль авлакогенов развит эффузивный и интрузивный магматизм с которым связано формирование вулканических покровов и трубок взрыва.

Видео:География 5 класс (Урок№15 - Движения земной коры.)Скачать

География 5 класс (Урок№15 - Движения земной коры.)

Литосферные плиты

Все магматические породы в пределах платформ называются траппами.

Более мелкими элементами являются валы, купола и т.д.

Литосферные платформы испытывают вертикальные колебательные движения: поднимаются или опускаются. С подобными движениями связывают неоднократно происходившие в течении всей геологической истории Земли трансгрессии и регрессии моря.

В Центральной Азии с новейшими тектоническими движениями платформ связывают образование горных поясов Центральной Азии: Тянь-Шаня, Алтая, Саян и т.д.

Подобные горы называют возрожденными (эпиплатформы или эпиплатформенные орогенные пояса или вторичные орогены). Они формируются в эпохи оррогенеза в районах примыкающих к геосинклинальным поясам.

Видео:География 5-6кл. §22 "Движение земной коры(1)"Скачать

География 5-6кл. §22 "Движение земной коры(1)"

Структуры земной коры и литосферы

При рассмотрении деформаций горных пород, которые являются следствием (результатом) движений земной коры и литосферы, видно, что Земля находится в беспрерывном развитии. Древние движения и связанные с ними другие геологические процессы сформировали определенное строение земной коры, т.е. геологическиеструктурыилитектонику земной коры.

Современные и частично новейшие движения продолжают изменять древние структуры, создавать современные структуры, которые нередко как бы накладываются на «старые» структуры.

Термин тектоника с латинского языка обозначает «строительство». Под термином «тектоника» понимают, с одной стороны, «строение какого-либо участка земной коры, определяющееся совокупностью тектонических нарушений и историей их развития», а с другой стороны, «учение о строении земной коры, геологических структурах и закономерностях их расположения и развития.

В последнем случае синоним термина геотектоника».

В.П. Гаврилов дает наиболее оптимальное понятие: «Геологическиеструктуры – участкиземнойкорыилитосферы, которые отличаются от соседних участков определенными сочетаниями состава (название и генезис), возраста, условий (форм) залегания и геофизических параметров слагающих их горных пород». Ис- ходя из этого определения, геологической структурой можно называть и пласт горной породы, и разлом, и более крупные структуры земной коры, состоящие из системы элементарных структур, т.е.

можно выделять геологические структуры разных уровней или рангов: глобальные, региональные, локальные и местные.

На практике геологи-съемщики, выполняющие геологическое картирование, выявляют местные и локальные структуры.

Наиболее крупными и глобальными структурами земной коры являются континентыили участки с континентальным типом земной коры и впадиныокеановили участки с океаническим типом земной коры, а также области их сочленения, отличающиеся зачастую активными современными движениями, которые изменяют и усложняют древние структуры (рис.

38, 39). Строители осваивают, прежде всего, участки континентов. В основе всех континентов лежат древние (дорифейские) платформы, которые окружены или пересекаются горноскладчатымипоясамииобластями.

Платформаминазывают крупные блоки земной коры, обладающие двухъярусным (этажным) строением. Нижний структурный этаж, сложенный дислоцированными комплексами осадочных, магматических и метаморфических пород, называют складчатым (кристаллическим) фундаментом (цоколем, основанием), который был образован древнейшими дислокационными движениями.

относительно устойчивые площади земной коры
Верхний этаж, сложенный почти горизонтально залегающими осадочными породами значительной мощности – осадочным (платформенным) чехлом.

Он был образован за счет более молодых вертикальных движений – опусканий и поднятий отдельных блоков фундамента, которые неоднократно были залиты морем, в силу чего оказались покрытыми чередующимися слоями осадочных морских и континентальных отложений.

В течение длительного времени формирования чехла блоки земной коры в пределах платформ отличались слабой сейсмичностью и отсутствием или редким проявлением вулканизма, поэтому они по характеру тектонического режима от- носятся к относительно устойчивым, жестким и малоподвижным структурам континентальной земной коры.

Из-за мощного почти горизонтального чехла платформам свойственны выровненные формы рельефа и характерны медленные современные вертикальные движения. В зависимости от возраста складчатого фундамента различают древние и молодые платформы.

Древниеплатформы (кратоны) имеют докембрийский, по некоторым авторам даже дорифейский, фундамент, перекрытый осадочными породами (отложениями) верхнепротерозойской (рифейской), палеозойской, мезозойской и кайнозойской систем.

относительно устойчивые площади земной коры

относительно устойчивые площади земной коры
В течение более 1 млрд лет блоки древних платформ были устойчивыми и относительно малоподвижными с преобладанием вертикальных движений.

Древние платформы (Восточно-Европейская, Сибирская, Китайско-Корейская, Южно- Китайская, Таримская, Индостанская, Австралийская, Африканская, Северо- и Южно-Американские, Восточно-Бразильская и Антарктическая) лежат в основе всех континентов (рис.

40). Главными структурами древних платформ являются щиты и плиты.

Щиты представляют собой положительные (относительно при- поднятые), как правило, изометричные в плане, участки платформ, в которых на поверхность выходит дорифейский фундамент, а осадочный чехол практически отсутствует или имеет ничтожную мощность. В фундаменте выделяют раннеархейские (беломорские) блоки гранитогнейсовых куполов, позднеархейско- раннепротерозойские (карельские) складчатые зоны зеленокаменных поясов из метаморфизованных зеленокаменно измененных вулканитов основного состава и осадочных пород, в т.ч. железистых кварцитов.

Большая площадь фундаментов перекрыта осадочным чехлом и называетсяплитой. Плитыпо сравнению со щитами представляют собой опущенные участки платформы. В зависимости от глубины залегания фундамента и соответственно мощности осадочного чехла выделяются антеклизы и синеклизы, перикратонные прогибы и авлакогены и другие более мелкие структурные элементы.

Антеклизы– участки плит, в пределах которых глубина залегания фундамента не превышает 1…2 км, а на отдельных участках фундамент может выходить на земную поверхность.

Маломощный осадочный чехол имеет антиклинальную форму изгиба поверхностей (Воронежская антеклиза).

Синеклизы представляют собой крупные пологие изометричные или слегка вытянутые структуры в пределах плит, ограниченные смежными щитами, антеклизами или др. Глубина залегания фундамента и соответственно мощность осадочных пород более 3…5 км.

Крылья имеют синклинальную форму изгиба поверхностей (Московская, Тунгусская). Склоны антеклиз и синеклиз обычно сложены валами (пологими поднятиями) и флексурами (изгибами складок, отражающими глубинные разломы – Жигулевская флексура).

Наибольшая глубина залегания (до 10…12 км) фундамента наблюдается в авлакогенах.

Авлакогены представляют собой относительно протяженные (до нескольких сотен километров) и узкие прогибы, ограниченные разломами и заполненные мощными толщами не только осадочных, но вулканических пород (базальтами), что сближает их по строению со структурами рифтового типа. Многие авлакогены переродились в синеклизы. Среди более мелких структур на плитах выделяются прогибы и впадины, своды и валы, соляные купола.

Молодыеплатформы имеют молодой архейско-протерозойско-палеозойский или даже палеозойско-мезозойский возраст пород фундамента и соответственно еще моложе возраст пород чехла – мезо-кайнозойский.

Самым ярким примером молодой платформы является Западно-Сибирская плита, осадочный чехол кото- рой богат залежами нефти и газа. В отличие от древних молодые платформы не имеют щитов, а окружены горно-складчатыми поясами и областями.

Складчатыепояса заполняют промежутки между древними платформами или отделяют их от впадин океанов. В их пределах горные породы разного происхождения интенсивно смяты в складки, пронизаны большим количеством разломов и интрузивных тел, что указывает на формирование их в условиях сжатия и пододвигания литосферных плит.

К крупнейшим складчатым поясам относятся Урало- Монгольский (Охотский), Северо-Атлантический, Арктический, Тихоокеанский (часто подразделяется на Восточно- и Западно-Тихоокеанский) и Средиземноморский. Все они зародились в конце протерозоя. Первые три пояса завершили свое развитие к концу палеозоя, т.е.

они как складчатые пояса существуют уже более 250…260 млн. лет. В течение этого времени в их пределах преобладают уже не дислокационные горизонтальные, а вертикальные относительно медленные движения. Два последних пояса – Тихоокеанский и Средиземноморский, продолжают свое развитие, выражающиеся в проявлении землетрясений и вулканизма.

В складчатых поясах выделяют складчатые области, которые сформировались на месте резко дифференцированных и подвижных областей геологического прошлого, т.е.там, где были, вероятно, и процессы спрединга, и субдукции или др. тектонические движения, характерные для современных областей. Складчатые области различают между собой по времени образования составляющих их структур и по возрасту горных пород, которые смяты в складки, пронизаны разломами и интрузиями. На обзорных картах строения земной коры выделяются обычно следующие области: байкальской складчатости, образовавшейся в позднем протерозое; каледонской – в раннем палеозое; герцинской или варисцийской – на границе карбона и перми; киммерийской или ларамийской – в поздней юры и мела; альпийской – в конце палеогена, кайнозойской – в середине миоцена.

Отдельные участки подвижных поясов, в которых формирование основных складчатых структур продолжается (сейсмофокальные зоны глубокофокусных землетрясений), рассматриваются многими учеными как современные геосинклинальныеобласти. Таким образом, понятия геосинклиналь иконвергентные границы, особенно зоны Вадати-Заварицкого-Беньофа, применяются для одних и тех же структур (участков) земной коры. Только понятие геосинклиналь используется, как правило, для древних складчатых областей и поясов сторонниками геосинклинальной теории (фиксизма), согласно которой в образовании складчатых областей ведущую роль играли вертикальные движения.

Второе понятие применяется сторонниками теории движения литосферных плит (мобилизма) для конвергентных границ, на которых преобладают горизонтальные движения в условиях сжатия, приводящие к образованию разломов, складок и как следствие поднятию земной коры, т.е. современных развивающихся областей складчатости.

Геосинклиналяминазываются наиболее активные подвижные участки земной коры. Они располагаются между платформами и представляют собой как бы их подвижные сочленения.

Для геосинклиналей характерны разнообразные по вели- чине тектонические движения, землетрясения, вулканизм, складкообразование. В зоне геосинклиналей происходит интенсивное накопление мощных толщ осадочных пород. К ним приурочено около 72 % всей массы осадочных пород, а на платформах только 28 %. Развитие геосинклинали завершается образование складчатостей, т.е.

областей с интенсивным смятием горных пород в складки, активными разрывными дислокациями и, как следствие, восходящими вертикальными тектоническими движениями. Этот процесс называется орогенезом (горообразованием) и ведет к расчленению рельефа.

Так возникают горные хребты и межгорные впадины – горные страны.

В пределах горно-складчатых областей выделяются антиклинории, синклинории, краевые прогибы и другие более мелкие структуры. Отличительной особенностью строения антиклинориев является то, что в их ядрах (осевых частях) залегают наиболее древние или интрузивные (глубинные) магматические горные породы, которые к периферии структур сменяются более «молодыми» породами. Осевые части синклинориевсложены более «молодыми» горными породами.

На- пример, в ядрах антиклинориев Уральской горно-складчатой герцинской (палеозойской) области вскрываются архейско-протерозойские метаморфические породы или интрузивные породы. В частности, ядра Восточно-Уральского антиклинория сложены гранитоидами, поэтому его называют иногда антиклинорием гранитных интрузий. В синклинориях данной области залегают, как правило, девонско-каменноугольные осадочно-вулканогенные породы в разной степени мета- морфизованные; в краевомпрогибе – мощные толщи самых «молодых» палеозойских – пермских, горных пород.

В конце палеозоя (примерно 250…260 млн лет тому назад), когда формировалась Уральская горно-складчатая область, на месте антиклинориев существовали высокие хребты, а на месте синклинориев и краевого прогиба – впадины-прогибы. В горах, где горные породы обнажаются на земной поверхности, активизируются экзогенные процессы: выветривание, денудация и эрозия.

Речные потоки разрезают и распиливают поднимающуюся область на горные хребты и долины. Начинается новый геологический этап – платформенный.

Таким образом, структурные элементы земной коры – геологические структуры, разных уровней (рангов) имеют определенное развитие и особенности строения, выраженные в сочетании различных горных пород, условиях (формах) их залегания, возрасте, а также влияют на формы земной поверхности – рельеф.

В связи с этим, инженеры-строители при подготовке различных проектных материалов и при строительстве, эксплуатации сооружений, особенно дорог, трубопроводов и других магистралей должны учитывать особенности движения и строение земной коры и литосферы.

Видео:Движения земной корыСкачать

Движения земной коры

География

План урока:

Видео:Почему движутся литосферные плиты: теория тектонических плит | Планета Земля | Познавательное видеоСкачать

Почему движутся литосферные плиты: теория тектонических плит | Планета Земля | Познавательное видео

Рельеф планетарного масштаба и другие формы рельефа

Величайшие формы рельефа Земли, то есть формы планетарного масштаба — это океаны (впадины) и материковые выступы, имеющие разное геологическое строение. Под океанами она двухслойная (базальт и осадочный пласт), более «тонкая» по толщине (от 5 км). Под континентами толщина коры доходит до 70 км, имеет три слоя: базальтовый, гранитный и осадочный. Особым разнообразием отличается рельеф суши, здесь выделяются относительно устойчивые (древние платформы) и подвижные участки земной коры.

Мегаформы рельефа земли или формы второго порядка — это крупные горы и равнины на суше и котловины и подводные хребты океана. Они занимают площадь в десятки и сотни тысяч километров квадратных.

Примером мегаформ могут служить Среднесибирское плоскогорье, впадина Мексиканского залива, горная система Кавказа и мн. др.

Макроформы выделяются в пределах мегаформ, они простираются на сотни, даже тысячи км кв., к ним относятся горные отдельные хребты и долины, крупные озерные впадины и др. Например, Куринская низменность, Главный Кавказский хребет, Смоленско-Московская возвышенность.

А на поверхности уже макроформ выделяются мезоформы (овраги, долины рек и холмы) и микроформы (например, бархан, грот).

А еще существуют наноформы рельефа, в переводе с греческого «нанос» — карлик. Это мелкие неровности, которые выделяются на разных формах рельефа. Примером нанорельефа служит обыкновенная луговая кочка

Устойчивые области земной коры

Устойчивыми участками земной коры являются платформы.

Это крупные (миллионы км кв.), малоподвижные области, подвергающиеся медленным вертикальным поднятиям и опусканиям. Занимают примерно половину площади поверхности материков. Основания устойчивых участков — магматические и метаморфические породы, смятые в складки. Возраст основания (или фундамента) позволяет подразделять платформы на древние и молодые.

Древние платформы — это первые ядра современных материков планеты

Кристаллическое основание древних платформ сформировалось более 1 млрд лет назад, таких участков — 40% от всех континентов.

У молодых платформ фундамент сформировался в фанерозое — эпоху в геологической истории, начавшуюся 542 млн лет назад и продолжающуюся по сей день. От всей площади материков такие платформы занимают всего 5%.

В строении древних платформ в основном выделяют два слоя (этажа) — кристаллическое основание (фундамент) и платформенный чехол, сложенный осадочными породами. Участки, сложенные указанными двумя этажами, называются плитами. Есть места, где на поверхность Земли выходит древний фундамент, эти участки называются щитами (крупные) или массивами (более мелкие)

Подвижные области земной коры

В литосфере есть подвижные участки, где активно происходят различные внутренние процессы — земная кора здесь движется и вертикально, и горизонтально, образуя разломы, куда затем внедряются массивы магматических пород, сминая горные породы в складки и т.д.

Это области, где извергаются вулканы, происходят землетрясения, формируется новая континентальная земная кора и образуются горы. Это сейсмический пояса. В рельефе они выражены складчатыми горными поясами и областями глубинных разломов земной коры на суше, в океане сейсмические пояса совпадают со срединно-океаническими хребтами и глубоководными желобами.

В основном складчатые горные участки располагаются на окраинах континентов. Исключением здесь является Евразия, так как горы на этом материке находятся и внутри самого континента.

Интереснейшей формой рельефа дна океана являются глубоководные желоба. Это длинные и узкие понижения дна на местах встречи литосферных плит. Здесь тонкая, но тяжелая океаническая плита сталкивается с более легкой материковой и погружается под нее. Глубочайшая океаническая впадина — Марианский желоб в Тихом океане. Ее глубина достигает 11 км, то есть в желобе может полностью скрыться самая высокая точка планеты — гора Эверест, высота которой 8848 м над уровнем моря. Впадина находится на стыке тектонических плит: Тихоокеанская уходит под Филиппинскую плиту.

Карта строения земной коры:

В рельефе дна океана выделяются также океанское ложе, представленное плоскими и холмистыми равнинами и срединно-океанические хребты.

Используя карту строения земной коры можно увидеть, что большая часть материков состоит из древних платформ и щитов (розовый и красный цвета на карте):

Закономерность такова: платформам в рельефе планеты соответствуют равнины, а поясам складчатости — горы.

  • Восточно-Антарктическая;
  • Восточно-Европейская;
  • Сибирская;
  • Южно-Американская;
  • Китайская;
  • Северо-Американская;
  • Индийская;
  • Австралийская.

Они имеют докембрийский фундамент.

Докембрийский период — часть геологической истории Земли, предшествовавшая началу кембрийского периода (около 540 млн. лет назад), когда возникла масса организмов. На этот период приходится 88% длительности геологической истории планеты, то есть около 4 млрд лет.

Молодые платформы, например, Западно-Сибирская и Западно-Европейская, имеют основание времен палеозоя и мезозоя.

Опасные природные явления литосферы

Нередко естественные процессы и явления в литосфере носят катастрофический характер.

Землетрясение — подземные толчки и колебания Земли, вызываются в основном естественными тектоническими, а иногда (очень редко) искусственными процессами

Предсказывать их довольно сложно, но возможно. Для этого существуют специальные службы слежения (мониторинга), прогнозирующие подобные явления и предупреждающие о них население.

Ежегодно на планете происходит около 1 млн землетрясений, но в большинстве своем они проходят незаметно. Либо имеют низкий балл по сейсмической шкале Рихтера, либо происходят на дне океанов. Но в некоторых случаях землетрясения в океанах вызывают цунами — огромные разрушительные волны.

В нашей стране 20% территории сейсмически подвижно. Сюда входят Камчатка, Кавказ, горы Прибайкалья, Курильские острова.

Вулкан — геологическое образование, гора с кратером. Через кратер на земную поверхность извергаются пары воды, горячие газы, расплавленные горные породы и др.

Различают действующие, уснувшие (не действуют в настоящее время, но извержения возможны) и потухшие вулканы (извержения маловероятны).

Вулканически активны сейчас:

  • Южная и Центральная Америка;
  • Японские острова;
  • Камчатка;
  • Курилы;
  • Ява;
  • Алеутские острова;
  • Меланезия;
  • Северо-запад США;
  • Гавайи;
  • Аляска;
  • Исландия;
  • Атлантический океан.

В нашей стране в настоящее время в пределах 60 действующих вулканов. Самый крупный — Ключевская сопка.

Его высота 4750 м, диаметр кратера полкилометра, кроме этого основного кратера у вулкана еще около 60 конусов и кратеров, расположенных по бокам сопки. Извержения происходят примерно один раз в семь лет.

В России есть и потухшие вулканы на Дальнем Востоке (например, Карымшина, извергался около 1,3–1,5 млн лет назад), горах Сибири (Черная сопка, 1,5 млн лет назад) и Кавказе (Казбек, последнее извержение в 650 году до н.э.)

Обвалы — явление в литосфере стихийного характера, когда массы горных пород обрываются и падают со склонов гор.

Возникают при нарушении равновесия между силой тяжести и удерживающих сил, причиной могут быть:

  • действие грунтовых и поверхностных вод;
  • действие ветра и воды;
  • тектоника;
  • человек и его деятельность.

Пример крупнейшего обвала: обвал на р. Мургаб, в результате которого с высоты 5000 м обрушилось более 2 млрд м 3 горных пород. Это случилось 18.02.1911 года. Сила удара была так велика, что породила землетрясение, мощная сейсмическая волна несколько раз обошла земной шар, и ее зарегистрировали все существующие тогда в мире сейсмические станции. В результате обвала образовалась высокая естественная плотина и Сарезское озеро — красивейший водоем планеты.

Сель — бурный грязевой поток, состоящий из воды и минералов, обломков горных пород, камней

Сель возникает в основном в долинах небольших горных рек, является последствием сильных ливней, бурного таяния льда в горах или обрушением обломочного материала в русло реки. Может сопровождаться большими разрушениями, на своем пути снося целые селения.

Оползень — масса рыхлых горных пород, отделившаяся под действием силы тяжести от склона, и сползающая вниз

Обычно возникают на склонах, где недалеко залегает водоупорный слой. Водоносный пласт насыщается влагой и начинает скользить по водоупорному слою.По своим последствиям и вследствие внезапности представляют собой опасность, размер которой зависит от масштаба сползшей земли.

Видео:§25 "Ресурсы земной коры", География 8 класс, Полярная звездаСкачать

§25 "Ресурсы земной коры", География 8 класс, Полярная звезда

Крупные формы рельефа и месторождения полезных ископаемых: закономерности размещения

Рельеф влияет на многие природные компоненты: воды, растительность, состав почв и др. Жизнь человека тоже тесно с ним связана. Издревле люди селились на равнинах, берегах рек, озер, морей, океанов, у подножия гор, учитывая при строительстве жилищ особенности рельефа. Важным и по сей день для человека является наличие полезных ископаемых (железных руд, золота, серебра, алмазов, каменного угля, нефти, газа и др.)

В размещении крупных форм рельефа есть свои закономерности. На малоподвижных устойчивых платформах располагаются равнины с поверхностью, сложенной осадочными породами.

У равнин холмистый или плоский рельеф.

Равнины, имеющие абсолютную высоту до 200 м называются низменностями (например, Западно-Сибирская, Прикаспийская, Амазонская), не выше 500 м — возвышенностями (Восточно-Европейская, Малопольская), более 500 и до 2 000 м — плоскогорьями (Среднесибирское, Витимское, Бразильское).

На границах литосферных плит находятся обширные складчатые горные системы.

Грандиозный Альпийско-Гималайский горный пояс протягивается на юге Евразии от Тихого до Атлантического океана. Его составными частями являются Памир, Кавказ, Гималаи, Альпы и др. горные системы. К северу от него расположен Центрально-Азиатский пояс высоких «возрожденных» гор — Алтай,Саяны, Тянь-Шань и др. — эти горные системы образовались в области древних гор в результате новейших движений земной коры. Тихоокеанский складчатый пояс, представленный огромным количеством вулканов и характеризующийся высокой сейсмичностью, охватывает Кордильеры и Анды, горы Чукотки и Камчатки, Сихотэ-Алинь и др.

Закономерности размещения месторождений полезных ископаемых

Полезные ископаемые — горные породы и минералы, применимые в народном хозяйстве

Полезные ископаемые размещаются на нашей планете по свойственным им закономерностям.

Они бывают твердые, жидкие, газообразные. А еще горючие, рудные и нерудные. По своему происхождению они делятся на три большие группы:

Магматические полезные ископаемые(руды, золото, серебро) формируются в глубине земных недр за счет внутренних процессов. Из названия видно, что их происхождение тесно связано с магмой. Рудные (магматические) ископаемые на платформах размещаются в ее фундаменте, могут быть приурочены к выступам фундамента платформы на поверхность (щиту) или к тем областям платформы, где осадочный слой небольшой и основание платформы находится недалеко от поверхности.

Щит — часть платформы, на которой ее фундамент выходит на поверхность планеты. Щиты образуют тектонически стабильную зону.

В платформах залегают большие месторождения железных руд, а также руд марганца, титана, алмазов, золота.

Магматические породы залегают и в складчатых областях: обычно внедрение магмы в разломы или на поверхность Земли происходит в период тектонической активности. Глубина образования таких месторождений измеряется километрами, их трудно извлечь. Только при достаточно длительном разрушении гор породы выходят на поверхность. Из магмы образуются руды меди, серебра, цинка, свинца и др.

Осадочные полезные ископаемые образуются при осаждении различных органических остатков и веществ в морях, болотах и озерах, а также в результате выветривания пород на суше.

Выветривание — процессы физического и химического разрушения горных пород под действием перепадов температуры, циклов замерзания и химического воздействия воды, атмосферных газов и организмов.

Закономерности размещения на планете полезных ископаемых осадочного происхождения зависят от их образования. Например, нефть образовалась из остатков древних организмов (органического вещества), находящихся в осадочных породах. Нефть, так же, как и природный газ, легко перемещаются по трещинам в толщах осадочных пород и поэтому накапливаются в межгорных и предгорных прогибах, а также в осадочном чехле платформ.

А каменный уголь образовался в местах быстрого захоронения без доступа кислорода растительных остатков — в болотах, прибрежных участках древних морей и озер. Например, каменноугольные бассейны на Русской равнине, предгорьях Алтая, на полуострове Индостан, в Восточной и Западной Сибири.

Отложение солей и фосфоритов происходило в мелководных древних бассейнах, поэтому их месторождения находятся в осадочном слое платформ.

Метаморфические полезные ископаемые образуются в результате сильного изменения уже существующих ископаемых. Породы подвергаются воздействию высоких температур и давлению, что приводит к физическим и химическим изменениям. Пример: мрамор, сланец, гнейс.

Вывод: месторождения магматических полезных ископаемых располагаются в кристаллическом фундаменте платформ и в горных областях. Осадочные полезные ископаемые — в осадочном слое платформ, межгорных и предгорных прогибах

Видео:§ 9. Строение земной коры. Землетрясения.Скачать

§ 9. Строение земной коры. Землетрясения.

Преобразование рельефа Земли в ходе хозяйственной деятельности людей

Сотни миллионов лет рельеф нашей планеты формировался только под воздействием внутренних и внешних природных процессов. А сейчас основное влияние на него оказывает деятельность человека. Самое сильное и пагубное воздействие оказывает открытая добыча полезных ископаемых.

Открытая разработка — способ добычи полезных ископаемых, при котором деятельность по выемке полезного ископаемого осуществляются в открытых пространствах на земной поверхности.

При подземных разработках по добыче полезных ископаемых нарушается залегание пластов пород, происходит оседание поверхности, также нарушается режим подземных вод, и даже разрушаются здания, дороги, другие сооружения.

Охрана природы требует от предприятий, занимающихся добычей минерального сырья, проведения мер по восстановлению земель:

  1. Приступая к работе предприятия должны провести мероприятия по пересадке деревьев и кустарников.
  2. Удалить и сложить в определенном месте плодородный слой почвы.
  3. После завершения работы засыпать карьер породами из отвалов, сверху насыпать почву.
  4. Передать земли в пользование сельскому хозяйству.

В начале 21 века рельефопреобразующая деятельность человека значительно расширилась. Дороги, аэродромы, мосты, плотины, насыпи, жилые дома, общественные здания, городские застройки — образуют антропогенный рельеф.

  • Город может повлиять на температуру воздуха территории, на которой он располагается, на направление и силу ветра, снеговой покров и перенос пыли, глубину залегания подземных вод и другие природные факторы.

Рельеф меняется и при распашке земель, такие работы могут привести к развитию ветровой и водной эрозии почв и пород, находящихся под этими почвами.

  • Съемки планеты из космоса показали, что на планете осталось всего 30% земель, не затронутых хозяйственной деятельностью человека.

С целью сохранения уникальных литосферных памятников в список объектов Всемирного наследия ЮНЕСКО внесены следующие уникальные места на планете:

  • Гранд-Каньон (Северная Америка);
  • Мамонтова Пещера (Северная Америка);
  • Вулканический горный массив на Эфиопском нагорье (Африка);
  • Горный массив в центральной части Гималаев с высочайшей вершиной планеты — Джомолунгмой (Евразия);

Изменение рельефа человеком, как вмешательство в естественные природные процессы, не может привести к положительным последствиям. Поэтому в настоящее время очень остро стоит вопрос рационального природопользования, он является одной из глобальных проблем современности.

🎥 Видео

Урок географии 8 класс Развитие земной коры Основные тектонические структурыСкачать

Урок географии  8 класс  Развитие земной коры  Основные тектонические структуры

§9 "Развитие земной коры", География 7 класс, Полярная звездаСкачать

§9 "Развитие земной коры", География 7 класс, Полярная звезда

§ 14. Развитие земной коры. Основные тектонические структуры.Скачать

§ 14. Развитие земной коры. Основные тектонические структуры.

География 5-6к. §23 Движения земной коры (1)Скачать

География 5-6к. §23 Движения земной коры (1)

Тектоника плит или расширение Земли?Скачать

Тектоника плит или расширение Земли?

§10 "Земная кора на карте", География 7 класс, Полярная звездаСкачать

§10 "Земная кора на карте", География 7 класс, Полярная звезда

География 7кл. §9 "Земная кора на карте"Скачать

География 7кл. §9 "Земная кора на карте"

$12 "Движения земной коры", География 6 класс, ДомогацкихСкачать

$12 "Движения земной коры", География 6 класс, Домогацких

§12 "Тектоническое строение", География 8 класс, ДомогацкихСкачать

§12 "Тектоническое строение", География 8 класс, Домогацких

Изучение земной коры (рассказывает геолог Павел Плечов)Скачать

Изучение земной коры (рассказывает геолог Павел Плечов)
Поделиться или сохранить к себе: