отношение силы давления к площади

Содержание
  1. Закон Паскаля
  2. Давление
  3. Как уменьшить или увеличить давление
  4. Задачка раз
  5. Задачка два
  6. Задачка три
  7. Определение закона Паскаля
  8. Давление твердого тела
  9. теория по физике ? статика
  10. Сила давления в физике и единицы давления — формулы и определения с примерами
  11. Давление жидкостей и газов и закон Паскаля
  12. Давление и закон Архимеда
  13. Давление твердых тел на поверхность и сила давления
  14. Определение давления
  15. Как можно увеличить или уменьшить давление
  16. Давление газов и жидкостей. Закон паскаля
  17. Почему газы создают давление
  18. От чего зависит давление газов
  19. Исследование давления жидкостей
  20. Закон Паскаля
  21. Гидростатическое давление
  22. Атмосферное давление и его измерение. Барометры
  23. Что такое атмосфера
  24. Измерение атмосферное давления
  25. Конструкция барометра-анероида
  26. Определение зависимости атмосферного давления от погоды и высоты
  27. 📽️ Видео

Видео:Давление. Единицы давленияСкачать

Давление. Единицы давления

Закон Паскаля

отношение силы давления к площади

О чем эта статья:

Видео:Давление. Единицы давления | Физика 7 класс #25 | ИнфоурокСкачать

Давление. Единицы давления | Физика 7 класс #25 | Инфоурок

Давление

Идущий по рыхлому снегу человек будет в него постоянно проваливаться. А вот на лыжах он сможет передвигаться по тому же самому снегу спокойно. Казалось бы, ничего не меняется — человек воздействует на снег с одинаковой силой и на лыжах, и без них.

Дело в том, что «проваливание» в снег характеризуется не только силой — оно также зависит от площади, на которую эта сила воздействует. Площадь поверхности лыжи в 20 раз больше площади поверхности подошвы, поэтому человек, стоя на лыжах, действует на каждый квадратный сантиметр с силой в 20 раз меньшей, чем без них.

Или, например, если вы будете с одинаковой силой втыкать кнопки в пробковую доску, легче войдет та кнопка, у которой более заостренный конец, так как его площадь меньше.

Резюмируем: результат действия силы зависит не только от ее модуля, направления и точки приложения, но и от площади поверхности, к которой эта сила приложена.

А теперь подтвердим этот вывод опытами, как настоящие физики.

Возьмем небольшую доску и вобьем гвозди в ее углы. Также возьмем емкость с песком и поставим конструкцию из доски и гвоздей в эту емкость. Сначала расположим конструкцию шляпками вниз и поставим на нее гирю. Конструкция не утонет в песке, а только чуть-чуть углубится в него.

отношение силы давления к площади

Затем перевернем конструкцию так, чтобы шляпки гвоздей оказались сверху и также поставим на доску гирю. Теперь конструкция утонет в песке.

отношение силы давления к площади

От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия силы.

Во всех примерах мы говорили о действии силы, перпендикулярной поверхности. Чтобы охарактеризовать это действие, используется величина давление.

Давление

p = F/S

p — давление [Па]

F — сила [Н]

S — площадь [м 2 ]

Видео:Опыты по физике. Зависимость давления от площади поверхности и силыСкачать

Опыты по физике. Зависимость давления от площади поверхности и силы

Как уменьшить или увеличить давление

Тяжелый гусеничный трактор производит давление на почву, равное 40–50 кПа. Мальчик массой 45 кг производит давление всего лишь в 3 раза меньше, чем такой трактор. Это связано с большой площадью гусениц трактора.

В зависимости от того, какое давление хотят получить, площадь опор уменьшают или увеличивают. Например, чтобы уменьшить давление здания на грунт, в процессе строительства увеличивают площадь нижней части фундамента.

Шины грузовых автомобилей делают значительно шире легковых автомобилей. Чтобы убедиться в этом, обратите внимание на колеса какой-нибудь большой фуры. Самые широкие шины можно увидеть на автомобилях, предназначенных для передвижения в пустыне. Тот же лайфхак используется в шасси самолетов.

Обратную зависимость тоже применяют, например, при создании лезвий колющих и режущих инструментов. Острое лезвие имеет малую площадь, поэтому даже при небольшом нажатии создается большое давление.

Задачка раз

Книга лежит на столе. Масса книги равна 0,6 кг. Площадь ее соприкосновения со столом равна 0,08 м2. Определите давление книги на стол. В этой задаче g = 10 Н/кг.

Решение

На стол будет давить сила, равная весу книги. Так как она покоится, ее вес будет равен силе тяжести. Следовательно:

p = mg/S = 0,6 × 10 / 0,08 = 75 Па

Ответ: давление книги на стол будет равно 75 Па.

Задачка два

Гусеничный трактор ДТ-75М массой 6 610 кг имеет опорную площадь обеих гусениц 1,4 м 2 . Определите давление этого трактора на почву. В этой задаче g = 10 Н/кг.

Решение:

p = mg/S = 6 610 × 10 / 1,4 = 47 214 Па = 47,2 кПа

Ответ: давление трактора на почву составляет 47,2 кПа.

Задачка три

Человек массой 80 кг с сумкой весом 100 Н стоит неподвижно на полу. Сила давления подошв его ботинок на пол равномерно распределена по площади 600 см2. Какое давление человек оказывает на пол? В этой задаче g = 10 Н/кг.

Решение

Масса человека: m = 80 кг.

Вес сумки, которую держит человек: Pc = 100 Н.

Площадь соприкосновения подошвы ботинок с полом: S = 600 см 2 .

600 см 2 = 600 / 10 000 м 2 = 0,06 м 2

Давление — это отношение силы к площади, на которую она действует. В данном случае на площадь действует сила, равная сумме силы тяжести человека и веса сумки:

Поэтому давление, оказываемое человеком с сумкой на пол, равно:

p = (mg + Pс) / S = (80 × 10 + 100) / 0,06 = 15 000 Па = 15 кПа

Ответ: давление человека с сумкой на пол равно 15 кПа.

Видео:Физика Как изменится давление, если сила давления увеличится в 2 раза, а площадь, на которуюСкачать

Физика Как изменится давление, если сила давления увеличится в 2 раза, а площадь, на которую

Определение закона Паскаля

Прежде чем переходить к формулировке закона, рассмотрим опыт с шаром Паскаля. Присоединим к трубе с поршнем полый шар со множеством небольших отверстий. Зальем в шар воду и будем давить на поршень. Давление в трубе вырастет и вода будет выливаться через отверстия, причем напор всех струй будет одинаковым. Такой же результат получится, если вместо воды в шарике будет газ.

отношение силы давления к площади

Это работает только с жидкостями и газами. Дело в том, что молекулы жидких и газообразных веществ под давлением ведут себя совсем не так, как молекулы твердых тел. Если молекулы жидкости и газа движутся почти свободно, то молекулы твердых тел так не умеют. Они могут лишь колебаться, немного отклоняясь от исходного положения. Именно благодаря свободному передвижению молекулы газа и жидкости оказывают давление во всех направлениях.

Итак, мы подошли к формулировке закона Паскаля, и звучит она так:

Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях.

Видео:От чего зависит давлениеСкачать

От чего зависит давление

Давление твердого тела

теория по физике ? статика

Давление твердого тела — отношение силы, действующей перпендикулярно поверхности, к площади этой поверхности.

Давление — скалярная величина. Обозначается буквой P. Единица измерения — Паскаль (Па), или Ньютон, деленный на метр квадратный (Н/м 2 ).

отношение силы давления к площади

Численно давление твердого тела определяется формулой:

F— перпендикулярная составляющая силы, которая действует на поверхность площадью S.

В твердых телах давление передается в том направлении, в котором действует на поверхность сила F.

Как уменьшить или увеличить давление?

Давление твердого тела на поверхность можно уменьшить двумя способами:

  • Путем уменьшения силы. Пример: узкие ножки уличного столика вдавливаются в песок, если поставить на него тяжелый груз. Но если поставить столик с такими же ножками на песок без груза, ножки не вдавливаются.
  • Путем увеличения площади поверхности. Пример: человек проваливается в снегу, но надев лыжи, он остается на поверхности. Сила, действующая на снежную гладь, осталась прежней (сила тяжести человека). Но площадь соприкосновения с поверхностью при этом увеличилась (площадь лыж больше площади обуви).

Давление также можно увеличить. Для этого нужно увеличить прикладываемую к поверхности силу или уменьшить площадь этой поверхности.

Пример №1. Книга лежит на столе. Масса книги равна 0,6 кг. Площадь ее соприкосновения со столом равна 0,08 м 2 . Определите давление книги на стол.

На стол будет давить сила, равная весу книги. Так как она покоится, ее вес будет равен силе тяжести. Следовательно:

P = F S . . = m g S . . = 0 , 6 · 10 0 , 08 . . = 75 ( П а )

Видео:Давление | Физика в анимациях | s02e08Скачать

Давление | Физика в анимациях | s02e08

Сила давления в физике и единицы давления — формулы и определения с примерами

Содержание:

Сила давления и единицы давления:

Вы уже знаете, что действие одного тела на другое характеризуют приложенной к нему силой. От чего зависит результат действия этой силы на тело?

Наблюдение 1. Из собственного опыта вы знаете, что очень тяжело идти по глубокому рыхлому снегу, поскольку ноги глубоко проваливаются в нём, а на лыжах передвигаться намного легче, так как проседание снеговой поверхности в этому случае значительно меньше. В обоих случаях вы действуете на снег с одинаковой силой, но площадь поверхности, на которую она распределяется в случае лыж значительно больше, чем в случае обуви, поэтому и деформация снега оказывается разной. Стоя на лыжах, выдавите на каждую единицу площади поверхности снега с силой, меньшей во столько раз, во сколько раз площадь поверхности лыж больше площади подошв обуви.

Наблюдение 2. Легковой автомобиль, в отличие от гусеничного трактора или болотохода, не может проехать по болотистой местности, хотя его вес намного меньше веса трактора. Рассмотрев колёса легкового автомобиля и гусеницы трактора, вы убеждаетесь в том, что площадь поверхности гусениц намного больше, чем колес.

Результат действия силы на поверхность зависит не , только от её значения, но и от площади той поверхности, перпендикулярно к которой она действует.

Убедимся в этом с помощью опытов.

Опыт 1. Заполним стеклянный сосуд песком. На песок поставим столик ножками вверх и на него — гирю массой 2 кг. Результат: столик почти не погрузился в песок (рис. 93, а). Поставим столик ножками на песок и на него — снова гирю массой 2 кг. Результат: ножки стола увязли в песке (рис. 93, б). Возьмём столик с острыми ножками. Поставим его ножками на песок, положив сверху ту же гирю массой 2 кг. Результат: заострённые ножки полностью погрузились в песок (рис. 93, в).

отношение силы давления к площади

Опыт свидетельствует, что чем меньше площадь опоры столика, тем глубже он погружается в песок под действием одинаковой силы.

Опыт 2. Возьмём два столика. Площадь поверхности ножек одного столика вдвое больше, чем второго. Положим на столики груз, причем на столик с большей площадью поверхности ножек положим вдвое больший груз. Результат действия силы будет одинаковый.

В рассмотренных примерах имела значение сила, действующая перпендикулярно к поверхности тела. Такую силу называют силой давления.

Величину, которая определяется отношением значения силы давления к площади поверхности, на которую она действует, называют давлением.

Давление обозначают малой латинской буквой р. Итак, чтобы определить давление р, нужно силу F , действующую перпендикулярно к поверхности, поделить на площадь этой поверхности S, т. е.

отношение силы давления к площади

Единицей давления является один паскаль (1 Па), она названа в честь французского учёного Блеза Паскаля. Давление 1 Па создаёт сила давления 1 Н, действующая на поверхность площадью 1 м 2 , то есть 1 Па = отношение силы давления к площади= 1 отношение силы давления к площади.

На практике ещё используют кратные единицы давления: гектопаскаль (гПа), килопаскаль (кПа): отношение силы давления к площади
Зная давление, можно определить силу давления, действующую на поверхность тела. Давление показывает, какая сила давления действует на единицу площади, поэтому эта сила давления равна произведению давления и площади поверхности:отношение силы давления к площади.

Всем хорошо известно, что во время шитья иглой швеи пользуются напёрстком. Иглу делают очень острой, чтобы умеренной силой пальцев создавать большое давление на ткань и прокалывать её. Но во время нажима пальца на иглу она с такой же силой давит на палец. Конец иглы со стороны ушка делают притуплённым, но во время работы давление на кожу пальца может быть очень большим, достаточным, чтобы ее поранить. Прочный металлический наперсток надежно защищает палец.

Почему подушка мягкая? Почему удобно лежать на перине или на надувном матрасе, а лежать на досках или твёрдой поверхности неудобно ? Оказывается, ощущение мягкости или твёрдости зависит не от свойства материала, а от значения давления на поверхность тела. Сделаем небольшие расчеты.

Будем считать, что масса взрослого человека составляет 60 кг, что равно весу приблизительно 600 Н, а поверхность тела — приблизительно 2 м 2 . Если человек лежит в кровати на перине, которая прогибается и будто охватывает тело, с ней соприкасается приблизительно четверть всей поверхности его тела, т. е. 0,5 м 2 Расчёты по таким данным дают давление 1200 Па. А если человек ляжет на твердую поверхность, то площадь соприкосновения будет составлять около 0,01 м 2 . Это соответствует давлению 60 000 Па, т. е. давление тела на твёрдую поверхность увеличится в 50 раз, отсюда и неудобства.

В разных областях современной техники приходится решать задачи получения высоких давлений, снижения давления или сохранения его в заданных границах. Проблема давления играет важную роль в транспорте. Дороги и железнодорожные пути должны надежно выдерживать давление разных транспортных средств. Этого достигают, уменьшая вес транспортных средств и увеличивая их площадь опоры. Колеса легкового автомобиля производят на дорогую давление около 300 кПа. Чтобы уменьшить давление на дорогу грузовых автомобилей, их делают многоосными, с колёсами большого диаметра, используют гусеницы. Так, давление, производимое трактором Т-130, вес которого — сотни тысяч ньютонов, равен 27 кПа. Это в 1,5 раза больше давления, которое оказывает на дорогу человек весом 600 Н.

С помощью чрезвычайно тонкого инструмента — жала — оса создаёт давление, соизмеримое с давлением во время взрыва (33 000 000 000 Па).

Кстати:

В Арктике и Антарктике на научных станциях пользуются такими транспортными средствами, как снегоходы «Пингвин» и «Харьковчанка». Снегоход «Харьковчанка» имеет дизельный двигатель мощностью 736 кВт и запас горючего на 1500 км. При массе 35 т он имеет гусеницы шириной 1 м, что даёт ему возможность преодолевать снежную целину, ледовые торосы, крутые склоны. Снегоход имеет утеплённую кабину площадью 25 м 2 с мощной отопительной системой, специальной герметичной обшивкой, позволяющей работать даже при морозах ниже — 70 0 С. В кабине есть спальные места, радиорубка, рабочая комната, кухня, сушилка, гардероб, санузел. Размеры снегохода: длина — 8,5 м, ширина — 3,5 м, высота — 4,2 м.

Пример №1

С какой целью под головку болта и гайку подкладывают широкие металлические кольца — шайбы, особенно когда скрепляют деревянные детали (рис. 94)?

отношение силы давления к площади

Ответ: во избежание повреждений деталей уменьшают на них давление за счёт увеличения площади контактной поверхности.

Пример №2

Взрослый человек, у которого площадь подошв обуви равна 450 см 2 , давит на пол с силой 700 Н. Определите давление человека на пол.

Дано:

S = 450 см 2 = 0,0450 м 2

Решение:

Определим давление человека на пол по формуле:

отношение силы давления к площади

Ответ: давление человека на пол равно 15 556 Па.

Видео:Давление в природе | Физика 7 класс #26 | ИнфоурокСкачать

Давление в природе | Физика 7 класс #26 | Инфоурок

Давление жидкостей и газов и закон Паскаля

Опыт 1. Возьмём три цилиндрических сосуда: в один положим деревянный брусок, в другой насыпем какой-либо крупы или песку, а в третий нальём воды (рис. 96).

отношение силы давления к площади

Деревянный брусок вследствие действия на него силы тяжести будет давить лишь на дно сосуда. Горох будет давить не только на дно, а и на стенки сосуда во всех точках касания горошин. Каждая горошина внутри сжата со всех сторон соседними горошинами и вследствие действия сил упругости сама будет давить во все стороны на горошины. Эти силы давления будут тем больше, чем глубже лежит горошина, т. е. чем больший слой гороха давит на неё сверху.

Вода, налитая в сосуд, вследствие большой подвижности молекул будет давить на дно и стенки сосуда. Каждая частица внутри воды будет сжата со всех сторон соседними частицами и вследствие упругости будет с такой же силой давить на соседние частицы. Эти силы будут тем больше, чем глубже будет находиться частица.

На рис. 97, а изображён прибор, который называют шаром Паскаля. Он имеет в разных местах поверхности маленькие отверстия. К нему присоединена трубка-цилиндр, в которую вставлен поршень. Если набрать в шар воды и нажать на поршень, то увидим, что струйки воды сквозь отверстия бьют во все стороны с одинаковой силой. Это объясняется тем, что поршень давит на поверхность жидкости в трубке. Частицы воды передают давление поршня другим частицам, которые лежат глубже. Таким способом давление поршня передаётся на все частицы воды в шаре. Вследствие этого часть воды выталкивается из шара в виде струек, бьющих изо всех отверстий.

Если шар заполнить дымом, то из всех отверстий шара начнут выходить струи дыма (рис. 97, б).

отношение силы давления к площади

Это подтверждает, что и газы передают давление, оказываемое на них, во все стороны одинаково.

Давление, оказываемое на жидкость или газ внешними силами, передаётся жидкостью или газом одинаково во всех направлениях.

отношение силы давления к площади

Это утверждение называют законом Паскаля.

На законе Паскаля основывается действие шприца: давление пальца врача на поршень шприца передаётся без изменений жидкости, содержащейся в нём, и лекарство выходят через иглу шприца.

Опыт 2. В стеклянную трубку, нижнее отверстие которой закрыто тонкой резиновой плёнкой, нальём воду (рис. 98, а). Дно трубки прогнётся. Значит, на дно действует сила давления воды. Чем больше наливаем воды, тем более прогибается плёнка. Но каждый раз после того, как резиновое дно прогнулось, вода в трубке находится в равновесии, так как кроме силы тяжести на воду действует сила упругости резиновой плёнки.

Опустим трубку с резиновым дном, в которую налита вода, в более широкий сосуд с водой. Видим, что по мере опускания трубки вниз резиновая плёнка постепенно распрямляется (рис. 98, б). Полное распрямление плёнки показывает, что давление на неё сверху и снизу одинаковое. Значит, в жидкости существует давление, направленное снизу вверх, и на этой глубине оно равно давлению, направленному сверху вниз.

Если выполнить опыт с трубкой, в которой резиновая плёнка закрывает боковое отверстие (рис. 99, а, б), то мы убедимся, что боковое давление жидкости на резиновую плёнку также будет одинаковым с обеих сторон.

Опыт 3. Сосуд, дно которого может отпадать, опускаем в банку с водой (рис. 100, а). Дно при этом плотно прижимается к краям сосуда давлением воды снизу вверх. Потом в сосуд осторожно нальём воды. Когда уровень воды в ней совпадёт с уровнем воды в банке, дно оторвётся от сосуда (рис. 100, б). В момент отрывания на дно давит сверху столб жидкости в сосуде, а снизу — столб воды, находящейся в банке. Эти давления одинаковы по значениям, однако дно отрывается от сосуда под действием силы тяжести.

Согласно закону Паскаля давление внутри жидкости на одном уровне одинаково во всех направлениях. Давление увеличивается с глубиной.

Давление жидкостей, обусловленное силой тяжести, называют гидростатическим.

А как рассчитать давление жидкости на дно и стенки сосуда ?

Чтобы ответить на этот вопрос припомним, что для того, чтобы определить плотность вещества р, нужно массу тела m разделить на его объём V, т. е.: отношение силы давления к площади

Единицей плотности в СИ является один килограмм на кубический метр отношение силы давления к площади.

Из формулы для плотности можно определить массу тела. Для этого нужно плотность вещества р умножить на объем тела V, т. е.:отношение силы давления к площади

Теперь возвратимся к рис. 98 в опыте 2. Рассчитаем давление, которое создаёт столбик жидкости высотой h на дно цилиндрического сосуда. Мы уже знаем, что давление р равно отношению силы давления F к площади поверхности S, на которую она действует:отношение силы давления к площади

В нашей задаче сила давления равно весу жидкости Р : отношение силы давления к площади

где m — масса жидкости, которую можем определить через плотность жидкости отношение силы давления к площадии объём жидкости V : отношение силы давления к площади

Объём цилиндрического столба жидкости V равен произведению площади дна сосуда S и высоты уровня жидкости над дном h: отношение силы давления к площади.

С учётом этих соотношений формула для давления приобретёт окончательный вид:
отношение силы давления к площади
Видим, что гидростатическое давление на любой глубине внутри жидкости зависит только от ее плотности отношение силы давления к площадии высоты уровня h: оно равно произведению этих величин и постоянной отношение силы давления к площади.

Гидростатическое давление жидкости не зависит ни от формы сосуда, ни от массы жидкости в сосуде, ни от площади его дна. Согласно закону Паскаля это давление на одном уровне жидкости одинаково действует и на дно, и на стенки сосуда.

Кстати:

В 1648 г. Блез Паскаль провёл интересный опыт. Он вставил в закрытую деревянную бочку, наполненную водой, тонкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кварту

( отношение силы давления к площади0,9 дм 3 ) воды. Из-за малой толщины трубки вода в ней поднялась на значительную высоту, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Пример №3

Чем объяснить, что вёдра в форме срезанного конуса очень распространены (рис. 101), хотя они менее устойчивы, и из них больше расплёскивается вода по сравнению с ведрами цилиндрической формы и такой же высоты? Кроме того, конусообразные ведра неудобно нести, так как приходится широко расставлять руки.

отношение силы давления к площади

Ответ: оказывается, в большинстве случаев вёдра выходят из строя из-за того, что у них выпадает дно. Следовательно, прочность дна определяет долговечность ведра. В ведре конической формы площадь дна меньше, чем в ведре цилиндрической формы такой же вместимости, а потому сила давления на дно меньше. Это единственное преимущество конических ведер оправдывает все другие их недостатки.

Пример №4

Наибольшая глубина, на которой учёные с корабля «Витязь» выловили рыбу, составляет 7200 м. Какое давление создаёт вода на этой глубине?
Дано:

отношение силы давления к площади = 1030 отношение силы давления к площади

отношение силы давления к площади= 9,81 отношение силы давления к площади

Решение:

Давление создаваемое морской водой на глубине, определим по формуле: отношение силы давления к площади.

Подставив значения величин, получим: отношение силы давления к площади

отношение силы давления к площади.

Ответ: отношение силы давления к площади= 72, 75 МПа.

Видео:Урок 42 (осн). Давление. Единицы давленияСкачать

Урок 42 (осн). Давление. Единицы давления

Давление и закон Архимеда

Почему жители севера для передвижения по снегу используют лыжи? Почему женщина, обутая летом в обувь на шпильках, оставляет на мягком асфальте заметные и глубокие следы? Зачем лезвия ножей время от времени натачивают? для чего у гвоздя есть острие? Попытаемся выяснить ответы на эти вопросы.

Давление твердых тел на поверхность и сила давления

Наблюдаем последствия действия силы: Одно из последствий действия силы — деформация тел, при этом чем большая сила действует на тело, тем больше будет деформация. Деформация зависит и от других факторов, в частности от площади поверхности, по которой распределяется действие силы.

В большинстве случаев чем больше площадь поверхности, на которую действует данная сила, тем меньше будет деформация. Проиллюстрируем это утверждение с помощью простого опыта: поставим деревянный брусок на снег сначала гранью меньшей площади, а затем — гранью большей площади (рис. 22.1).

отношение силы давления к площади

В первом случае снег деформируется сильнее (брусок глубже провалится в снег), хотя в обоих случаях сила, действующая на снег со стороны бруска (то есть вес бруска), одинакова. Можно провести еще один опыт: нажмите с одинаковой небольшой силой на поверхность песка сначала раскрытой ладонью, а затем пальцем — и вы увидите, в каком случае глубина следа будет больше (рис. 22.2).

отношение силы давления к площади

Определение давления

Для характеристики зависимости результата действия силы от площади поверхности, на которую действует эта сила, используют такое понятие, как давление.

Давление — это физическая величина, которая характеризует результат действия силы и равна отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности: отношение силы давления к площадигде p — давление; F — сила давления — сила, действующая на поверхность перпендикулярно этой поверхности; S — площадь поверхности. Единица давления в СИ — паскаль (Па); названа в честь французского ученого Блеза Паскаля (рис. 22.3): [p]=Па. 1 Па — это давление, которое создает сила 1 Н, действуя перпендикулярно поверхности площадью отношение силы давления к площади отношение силы давления к площади1 Па — небольшое давление (примерно такое давление оказывает на стол альбомный лист для рисования), поэтому чаще используют кратные единицы давления: гектопаскаль (1 гПа = 100 Па), килопаскаль (1 кПа = 1000 Па), мегапаскаль (1 МПа = 1 000 000 Па). Рассмотрите таблицу и подумайте, почему, например, гусеницы трактора оказывают на грунт намного меньшее давление, чем колеса легкового автомобиля.

отношение силы давления к площади

Как можно увеличить или уменьшить давление

Из определения давления отношение силы давления к площадиследует, что давление твердых тел можно изменить двумя способами. Первый способ: изменить силу, действующую на поверхность данной площади. С увеличением силы давление увеличивается; с уменьшением силы давление уменьшается. Второй способ: изменить площадь поверхности, на которую действует данная сила давления. Для увеличения давления площадь нужно уменьшить (именно поэтому натачивают инструменты — ножницы, ножи, шила и т. п.) (рис. 22.4). Для уменьшения давления площадь поверхности нужно увеличить. Рассмотрите рис. 22.5 и объясните, почему человек оказывает на снег большее давление, чем тяжелый вездеход.

отношение силы давления к площади

отношение силы давления к площади

Пример №5

Сравните давления, которые оказывают на поверхность снега юные спортсмены — турист и лыжник. Масса каждого из них вместе со снаряжением равна 63 кг. Площадь подошвы ботинка туриста — приблизительно отношение силы давления к площади, площадь лыжи — приблизительно отношение силы давления к площади. Анализ физической проблемы. Давление, которое оказывает каждый спортсмен, определяется силой давления и площадью, на которую он опирается. В обоих случаях сила давления —это вес спортсмена; он распределяется на две подошвы или две лыжи. Будем считать, что на обе подошвы (лыжи) нагрузка распределяется равномерно. Задачу будем решать в единицах СИ.

отношение силы давления к площади,отношение силы давления к площадиотношение силы давления к площади,отношение силы давления к площадиотношение силы давления к площади,отношение силы давления к площади

отношение силы давления к площади,отношение силы давления к площади

Решение:

По определению давления:отношение силы давления к площади

Здесь отношение силы давления к площади отношение силы давления к площадиПодставив выражения для F и S в формулу давления, имеем: отношение силы давления к площадиПроверим единицу, найдем значения искомых величин: отношение силы давления к площадидля туриста:отношение силы давления к площадиотношение силы давления к площади

для лыжника:отношение силы давления к площади

Анализ результатов. Давление, создаваемое туристом, приблизительно в 8,6 раза больше давления, создаваемого лыжником. Это реальный результат, ведь при равных силах большее давление создает та сила, которая действует на меньшую площадь.

Ответ:отношение силы давления к площади

Итоги:

Давление p — это физическая величина, которая характеризует результат действия силы и равна отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности: отношение силы давления к площади. Единица давления в СИ — паскаль отношение силы давления к площади. Для увеличения давления следует уменьшить площадь поверхности, на которую действует сила давления, или увеличить силу давления. Для уменьшения давления нужно увеличить площадь поверхности, на которую действует сила давления, или уменьшить силу давления.

Давление газов и жидкостей. Закон паскаля

Почему при надувании резинового воздушного шарика увеличивается его объем? ответ понятен: в шарике становится больше воздуха. а можно ли увеличить объем шарика без того, чтобы его надувать? Почему налитая в сосуд жидкость создает давление не только на дно сосуда, но и на его боковые поверхности? Почему водитель, нажимая на тормоз, может остановить тяжелый автомобиль? Попробуем «разгадать» эти загадки.

отношение силы давления к площади

Почему газы создают давление

Положим слегка надутый завязанный воздушный шарик под колокол воздушного насоса (рис. 23.1, а). Если из­ под колокола откачивать воздух, объем шарика будет увеличиваться (рис. 23.1, б). Почему это происходит?

отношение силы давления к площади

И снаружи шарика, и внутри него находится воздух (газ). Газ состоит из частиц (атомов и молекул), которые непрерывно движутся во всех направлениях и «бомбардируют» резиновую пленку, создавая на нее давление (рис. 23.2). Понятно, что сила удара одной частицы очень мала. Однако частиц в газе очень много — всего за 1 секунду количество их ударов по поверхности пленки таково, что для его записи требуется число с 23 нулями!

отношение силы давления к площади

Поэтому общая сила, с которой ударяет такое огромное количество частиц, является значительной. Воздух внутри и снаружи шарика оказывает давление соответственно на внутреннюю и внешнюю поверхности резиновой пленки.

Если эти давления одинаковы, резиновая пленка не растягивается. А вот если давление внутри шарика становится больше внешнего давления, то шарик увеличивает свой объем. Надеемся, теперь вы сможете объяснить, почему воздушный шарик раздувается и тогда, когда мы его надуваем, и тогда, когда откачиваем воздух снаружи шарика.

От чего зависит давление газов

Давление газа создается ударами его частиц, поэтому увеличение как количества ударов, так и силы ударов приводит к увеличению давления газа. Следовательно, давление газов можно увеличить двумя способами. Первый способ — увеличить плотность газа отношение силы давления к площади. Для этого можно добавить газ в сосуд (увеличить массу m газа), а можно уменьшить объем V самого сосуда (рис. 23.3)

отношение силы давления к площади

Второй способ — увеличить температуру газа. Чем выше температура газа, тем быстрее движутся его частицы. Удары частиц о стенки сосуда становятся чаще, сила их ударов возрастает, и в результате давление газа в сосуде увеличивается. Соответственно уменьшение давления газа будет происходить при уменьшении плотности или температуры газа.

Исследование давления жидкостей

В отличие от твердых тел жидкости легко изменяют свою форму — они приобретают форму того сосуда, в котором находятся, другими словами, жидкости текучи. Именно поэтому жидкости оказывают давление и на дно, и на боковые стенки сосуда, в котором находятся (в отличие от твердых тел, которые оказывают давление только на ту часть поверхности, на которую опираются). Если в боковой стенке сосуда, заполненного жидкостью, сделать отверстия, то жидкость польется через них (рис. 23.4).

отношение силы давления к площади

Следствием текучести жидкостей является также то, что на любое погруженное в жидкость тело жидкость давит со всех сторон.

Закон Паскаля

Благодаря своей текучести жидкость способна передавать давление по всему объему сосуда, в котором находится. Сделав иглой небольшие отверстия в полиэтиленовом пакете, наберем в пакет воду и завяжем. Нажмем на пакет — вода будет выливаться из всех отверстий (рис. 23.5).

отношение силы давления к площади

Аналогичный эксперимент можно провести с воздухом или другим газом (рис. 23.6). Опираясь на подобные опыты, французский физик Б. Паскаль открыл закон, который сейчас называется закон Паскаля: давление, оказываемое на неподвижную жидкость, передается жидкостью одинаково во всех направлениях. То же самое можно сказать о газах.

отношение силы давления к площади

Применяем закон Паскаля:

Свойство жидкостей и газов передавать давление во всех направлениях мы наблюдаем в повседневной жизни; это свойство широко используют в технике. Благодаря ему мы имеем возможность слышать, ведь воздух передает звук; работает наша сердечно­сосудистая система, ведь несмотря на то, что кровеносные сосуды имеют большое количество изгибов, давление, создаваемое сердцем, передается во все части тела. На законе Паскаля основана система торможения многих транспортных средств, действие домкратов, насосов и других гидравлических машин. Рассмотрим принцип действия гидравлических машин на примере гидравлического пресса, который применяют для прессования фанеры и картона, отжима растительных масел, изготовления деталей машин и механизмов и т. п.

Гидравлический пресс — это простейшая гидравлическая машина, которую используют для создания больших сил давления. Гидравлический пресс состоит из двух соединенных между собой цилиндров разного диаметра, заполненных рабочей жидкостью (чаще машинным маслом) и закрытых подвижными поршнями (см. рис. 23.7). Если к поршню меньшего цилиндра приложить силу отношение силы давления к площади(см. рис. 23.7, б), то эта сила создаст на поверхность жидкости некоторое дополнительное давление p: отношение силы давления к площадигде отношение силы давления к площади— площадь меньшего поршня. Согласно закону Паскаля это дополнительное давление будет передаваться во все точки жидкости, заполняющей сообщающиеся цилиндры. Следовательно, жидкость начнет давить на поршень большего цилиндра с некоторой силой отношение силы давления к площади

отношение силы давления к площадигде отношение силы давления к площади— площадь большего поршня; р — дополнительное давление.

отношение силы давления к площади

Поскольку отношение силы давления к площадиимеем: отношение силы давления к площади, то есть отношение силы давления к площадисила давления, которая действует со стороны жидкости на большой поршень, больше силы, которая действует на малый поршень, во столько раз, во сколько раз площадь большого поршня больше площади малого: отношение силы давления к площадиОтношение отношение силы давления к площади— это выигрыш в силе. Гидравлический пресс позволяет получить значительный выигрыш в силе: чем больше будут различаться между собой площади поршней, тем большим будет выигрыш в силе (рис. 23.7). По такому принципу работают и другие гидравлические инструменты и устройства. Так, гидравлический подъемник позволяет, приложив небольшую силу, поднять тяжелый автомобиль (рис. 23.8), гидравлический тормоз позволяет остановить автомобиль, приложив незначительную силу давления ноги, и т. д. Опираясь на рис. 23.8, попробуйте разобраться, как работает гидравлический подъемник.

отношение силы давления к площади

Итоги:

Газ оказывает давление на поверхность в результате многочисленных ударов об эту поверхность частиц газа. Давление газа возрастает при увеличении плотности или температуры газа и уменьшается при уменьшении плотности или температуры газа. Вследствие своей текучести жидкость оказывает давление на дно и боковые стенки сосуда, а также на любое тело, погруженное в данную жидкость. Давление, оказываемое на неподвижную жидкость, передается этой жидкостью одинаково во всех направлениях (закон Паскаля). Свойство жидкостей передавать давление одинаково во всех направлениях положено в основу действия гидравлических машин. Сила, действующая со стороны жидкости на большой поршень гидравлической машины, больше силы, действующей на малый поршень, во столько раз, во сколько раз площадь большого поршня больше площади малого: отношение силы давления к площади

Гидростатическое давление

На рис. 24.1 изображен современник Блеза Паскаля, стоящий на кожаной подушке, заполненной водой. с подушкой соединена открытая сверху трубка — ее исследователь держит в руках. Почему доска, на которой стоит человек, не сжимает подушку полностью и не вытесняет через трубку всю воду наружу?

Получаем формулу для расчета:

Гидростатического давления Вы уже знаете, что в результате притяжения к Земле и благодаря собственной текучести жидкость оказывает давление как на дно, так и на стенки сосуда, в котором содержится. Жидкость оказывает давление и на любое погруженное в нее тело. Давление неподвижной жидкости называют гидростатическим давлением.

отношение силы давления к площади

Определим гидростатическое давление на дно сосуда. Чтобы упростить расчеты, возьмем цилиндрический сосуд с площадью дна S. Пусть в сосуд налита жидкость плотностью ρ, а высота столба жидкости в сосуде — h (рис. 24.2).

отношение силы давления к площади

Чтобы вычислить давление, которое создает жидкость на дно сосуда, следует силу F, действующую на дно, разделить на площадь S дна: отношение силы давления к площадиВ данном случае сила F, создающая давление на дно сосуда, — это вес P жидкости. Поскольку жидкость в сосуде неподвижна, вес жидкости равен произведению массы m жидкости на ускорение свободного падения g: отношение силы давления к площадиМассу жидкости найдем через объем и плотность жидкости: m=ρ ;V объем налитой в сосуд жидкости — через высоту h столба жидкости и площадь S дна сосуда: V= Sh. Следовательно, массу жидкости можно найти по формуле: отношение силы давления к площадиПодставив последовательно выражения для F и m в формулу давления, получим: отношение силы давления к площадиИтак, имеем формулу для расчета гидростатического давления — давления, которое создает неподвижная жидкость: отношение силы давления к площадиКак видим, гидростатическое давление зависит только от плотности жидкости и высоты столба жидкости в сосуде.

Проводим исследования и делаем выводы:

Зависимость гидростатического давления от высоты столба жидкости впервые продемонстрировал Блез Паскаль. Взяв бочку, до краев заполненную водой, исследователь герметично закрыл ее крышкой со вставленной длинной тонкой трубкой. Поднявшись на балкон второго этажа жилого дома, Паскаль вылил в трубку всего один стакан воды. Вода заполнила всю трубку и создала на стенки и дно бочки такое огромное давление, что в боковых стенках бочки появились щели (рис. 24.3).

отношение силы давления к площади

Обратите внимание! Согласно закону Паскаля давление жидкости передается во всех направлениях, а значит, по формуле отношение силы давления к площадиможно также определить давление, которое создает слой жидкости высотой h на любое тело, погруженное в эту жидкость на данную глубину, а также давление на стенки сосуда. Из закона Паскаля и формулы гидростатического давления также следует, что давление внутри неподвижной однородной жидкости на одном уровне* одинаково. Рассмотрите рис. 24.4. Казалось бы, давление воды на дне подводной пещеры меньше, чем на дне открытого моря. Однако, если бы это действительно было так, вследствие большего давления вода из моря хлынула бы в пещеру. Но этого не происходит.

отношение силы давления к площади

Пример №6

На дне бассейна расположено круглое отверстие, закрытое пробкой радиусом 5 см. Какую силу нужно приложить к пробке, чтобы вынуть ее из отверстия, если высота воды в бассейне 2 м? Массой пробки и силой трения между пробкой и отверстием пренебречь. Анализ физической проблемы. Вынуть пробку мешает сила давления воды в бассейне. Массу пробки и силу трения учитывать не нужно, поэтому сила, необходимая для того, чтобы вынуть пробку из отверстия, по значению должна быть не меньше, чем сила гидростатического давления воды на пробку: отношение силы давления к площади(см. рисунок).

Уровнем называют любую горизонтальную поверхность.

отношение силы давления к площади

отношение силы давления к площади,отношение силы давления к площади,отношение силы давления к площади,отношение силы давления к площади

отношение силы давления к площади

Решение:

По определению давления:

отношение силы давления к площади

Здесь отношение силы давления к площади— гидростатическое давление; отношение силы давления к площади— площадь круга. Подставив выражения для p и S в формулу для отношение силы давления к площадиполучим:

отношение силы давления к площади

Так как отношение силы давления к площадиокончательно имеем: отношение силы давления к площадиПроверим единицу, найдем значение искомой величины:

отношение силы давления к площади

Ответ: следует приложить силу не менее чем 157 Н.

Итоги:

В результате притяжения к Земле жидкости создают давление на дно и стенки сосудов, а также на любое погруженное в них тело. Давление p неподвижной жидкости называют гидростатическим давлением — оно зависит только от плотности ρ жидкости и высоты h столба жидкости. Гидростатическое давление вычисляют по формуле отношение силы давления к площади. Давление внутри неподвижной однородной жидкости на одном уровне одинаково.

Атмосферное давление и его измерение. Барометры

Когда мы делаем глоток чая, то вряд ли размышляем над физикой этого процесса. При этом глотание, как и многие другие процессы, происходит благодаря давлению воздуха вокруг нас — атмосферному давлению. откроем для себя некоторые важные свойства атмосферного давления и научимся его измерять.

Что такое атмосфера

Вы хорошо знаете, что наша планета Земля окружена воздушной оболочкой, которую называют атмосферой (в переводе с греческого — «пар» и «сфера») (рис. 25.1). Почему же существует воздушная оболочка Земли? Воздух состоит из молекул и атомов. Молекулы и атомы имеют массу, поэтому они притягиваются к Земле благодаря действию силы тяжести. Все огромное количество молекул газов, составляющих атмосферу, находится в непрерывном хаотическом движении — они все время сталкиваются, отскакивают друг от друга, изменяют значение и направление скорости своего движения… Именно поэтому они не «падают» на Землю, а находятся в пространстве вблизи нее.

отношение силы давления к площади

По подсчетам, атмосфера Земли имеет массу около отношение силы давления к площади. Под действием силы тяжести верхние слои атмосферы давят на нижние, поэтому воздушный слой непосредственно у поверхности Земли сжат больше и, согласно закону Паскаля, создает давление на поверхность Земли и на все тела вблизи нее. Это и есть атмосферное давление p(атм .) Атмосферное давление обусловливает существование всасывания — поднятия жидкости за поршнем (в насосах, шприцах и т. п.) (рис. 25.2). Если поднимать поршень, то атмосферное давление, действуя на свободную поверхность жидкости в сосуде, будет нагнетать жидкость вверх, в пустоту под поршнем. Со стороны все выглядит так, будто жидкость поднимается за поршнем сама по себе.

отношение силы давления к площади

Кстати, долгое время поднятие жидкости за поршнем, движущимся вверх, приводилось как одно из доказательств известного принципа Аристотеля «Природа боится пустоты». Однако в середине XVII в. при строительстве фонтанов во Флоренции столкнулись с непонятным явлением: оказалось, что вода, которая всасывается насосами, не поднимается выше 10,3 м (рис. 25.3). Галилео Галилей предложил разобраться в этом своим ученикам — Эванджелисте Торричелли (1608–1647) и Винченцо Вивиани (1622–1703). Разбираясь с данной проблемой, Э. Торричелли впервые доказал существование атмосферного давления.

отношение силы давления к площади

Измерение атмосферное давления

Для удобства проведения опытов Э. Торричелли догадался заменить воду жидкостью с намного большей плотностью. Стеклянную трубку длиной около метра, запаянную с одного конца, ученый доверху наполнил ртутью. Затем, плотно закрыв отверстие, он перевернул трубку, опустил ее в чашу с ртутью и открыл отверстие — часть жидкости из трубки вылилась в чашу. В трубке остался столб ртути высотой приблизительно 760 мм, а над ртутью образовалась пустота (рис. 25.4). Проведя множество опытов, Торричелли установил: высота столба ртути, остающейся в трубке (760 мм), не зависит ни от длины трубки, ни от ее диаметра, — эта высота немного изменяется только в зависимости от погоды.

отношение силы давления к площади

Торричелли сумел также объяснить, почему высота столба ртути имеет именно такую высоту. Однородная жидкость в трубке и чаше неподвижна. Значит, согласно закону Паскаля давление на поверхность ртути со стороны атмосферы и гидростатическое давление столба ртути в трубке одинаковы. То есть давление столба ртути высотой 760 мм равно атмосферному давлению.давление, которое создает столб ртути высотой 760 мм, называют нормальным атмосферным давлением: отношение силы давления к площадиВ данном случае в качестве единицы атмосферного давления взят один миллиметр ртутного столба (1 мм рт. ст.). Выразим нормальное атмосферное давление в единицах СИ — паскалях. Из материала 4 вы знаете, что гидростатическое давление вычисляют по формуле: p=ρ hg. Учитывая, что плотность ртути отношение силы давления к площади, а высота столба ртути h = 0,76 м, имеем: отношение силы давления к площадиОбратите внимание: выражая атмосферное давление в паскалях, для расчетов следует брать отношение силы давления к площадиВ физике и технике также используют внесистемную единицу атмосферного давления — физическую атмосферу (1 атм). Одна физическая атмосфера равна нормальному атмосферному давлению: 1атм ≈100кПа.

Конструкция барометра-анероида

Если к трубке Торричелли присоединить вертикальную шкалу (линейку), то получим простейший барометр — прибор для измерения атмосферного давления. Действие такого барометра основано на том, что столб жидкости прекращает подниматься (опускаться) как только гидростатическое давление столба жидкости становится равным атмосферному давлению. Барометр Торричелли — достаточно точный прибор, однако большой размер, ядовитые пары ртути и стеклянная трубка делают его неудобным для повседневного использования. Сейчас широко применяют барометры анероиды — приборы для измерения атмосферного давления, работающие без помощи жидкости (рис. 25.5). Главная часть барометра­анероида — легкая и упругая пустая металлическая коробочка 1 с гофрированной (ребристой) поверхностью. Воздух в коробочке находится при сниженном давлении. К стенке коробочки прикреплена стрелка 2, насаженная на ось 3. Конец стрелки передвигается по шкале 4, раз­меченной в миллиметрах ртутного столба или паскалях. Все детали барометра размещены в корпусе, передняя часть которого закрыта стеклом. Изменение атмосферного давления вызывает изменение силы, сжимающей стенки коробочки. Соответственно изменяется изгиб стенок коробочки. Изгиб стенок передается стрелке и вызывает ее движение.

Барометры­ анероиды более удобны в использовании, чем ртутные приборы: они легкие, компактные и безопасные.

отношение силы давления к площади

Определение зависимости атмосферного давления от погоды и высоты

Наблюдая за барометром, можно легко прогнозировать изменение погоды. Например, перед ненастьем атмосферное давление обычно падает. Показания барометра зависят не только от погоды, а и от высоты над уровнем моря. Чем выше место наблюдения над уровнем моря, тем меньше атмосферное давление. Вблизи поверхности Земли через каждые 11 м высоты атмосферное давление уменьшается приблизительно на 1 мм рт. ст. Поскольку атмосферное давление зависит от высоты, барометр можно проградуировать таким образом, чтобы по давлению воздуха определять высоту. Так был изобретен альтиметр — прибор для измерения высоты (рис. 25.6).

отношение силы давления к площади

Итоги:

Воздух имеет массу. Из­-за притяжения Земли верхние слои атмосферы (воздушной оболочки Земли) давят на нижние. Давление воздуха на поверхность Земли и на все тела вблизи нее называют атмосферным давлением. Точное измерение атмосферного давления обеспечивает ртутный барометр (барометр Торричелли). Давление столба ртути высотой отношение силы давления к площади— это нормальное атмосферное давление. На практике используют барометры ­анероиды благодаря их удобству, небольшим размерам и безопасности. С помощью барометров можно прогнозировать изменение погоды и определять высоту: атмосферное давление уменьшается перед ненастьем, а также с высотой.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Механическое давление в физике
  • Столкновения в физике
  • Рычаг в физике
  • Блоки в физике
  • Вес тела в физике
  • Закон всемирного тяготения
  • Свободное падение тела
  • Равнодействующая сила и движение тела под действием нескольких сил

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📽️ Видео

Переосмысление отношения объема/давленияСкачать

Переосмысление отношения объема/давления

Давление. ПримерСкачать

Давление. Пример

Физика 7 класс. §35 Давление. Единцы давленияСкачать

Физика 7 класс. §35 Давление. Единцы давления

Физика Определите, какое давление оказывает на пол стоящий человек. Примите, что площадь каждойСкачать

Физика Определите,  какое давление оказывает на пол стоящий человек. Примите, что площадь каждой

Физика 7 класс ДавлениеСкачать

Физика 7 класс  Давление

Давление Физика в опытах и экспериментахСкачать

Давление   Физика в опытах и экспериментах

Физика 7 класс (Урок№18 - Давление. Способы увеличения и уменьшения давления.)Скачать

Физика 7 класс (Урок№18 - Давление. Способы увеличения и уменьшения давления.)

Гидростатическое давлениеСкачать

Гидростатическое давление

Атмосферное давлениеСкачать

Атмосферное давление

Сила атмосферного давления [Veritasium]Скачать

Сила атмосферного давления [Veritasium]

ДАВЛЕНИЕ физика 7 класс ЕДИНИЦЫ ДАВЛЕНИЯ ПерышкинСкачать

ДАВЛЕНИЕ физика 7 класс ЕДИНИЦЫ ДАВЛЕНИЯ Перышкин

Давление. Передача давления твердыми телами. 7 класс.Скачать

Давление. Передача давления твердыми телами. 7 класс.
Поделиться или сохранить к себе: