Видео:Основы Сопромата. Геометрические характеристики поперечного сеченияСкачать
Техническая механика
Сопротивление материалов
Видео:Моменты инерции сечения из простых фигурСкачать
Геометрические характеристики плоских сечений
При некоторых видах деформаций прочность и жесткость (способность противостоять деформации) элементов конструкций зависит не только от величины поперечного сечения, но и от формы этого сечения.
Самый простой пример — обыкновенную школьную линейку можно легко изогнуть относительно широкой стороны поперечного сечения и совершенно невозможно изогнуть относительно его короткой стороны. При этом общая площадь сечения в обоих случаях одинакова. На основании этого примера становится очевидным, что на сопротивление некоторым видам деформации оказывает влияние (иногда — решающее) не только величина площади сечения бруса, но и его геометрическая форма.
При изучении деформаций изгиба и кручения нам потребуется знание некоторых геометрических характеристик плоских сечений, которые оказывают влияние на способность конструкций сопротивляться деформациям относительно той или иной оси либо полюса (точки).
Чтобы понять суть явления и влияния этих геометрических характеристик на сопротивление бруса, например, изгибу, следует обратиться к основополагающим постулатам сопромата. Как известно из установленного в 1660 году английским физиком Робертом Гуком закона, напряжение в сечениях бруса прямо пропорционально его относительному удлинению. Очевидно, что волокна, расположенные дальше от оси изгиба, растягиваются (или сжимаются) сильнее, чем расположенные вблизи оси. Следовательно, и напряжения возникающие в них будут бόльшими.
Можно привести условную сравнительную аналогию между напряжением в разных точках сечения бруса с моментом силы — чем больше плечо силы — тем больше ее момент (относительно оси или точки). Аналогично — чем дальше от какого-либо полюса (оси) отстоит точка в сечении, тем большее напряжение в ней возникает при попытке изогнуть или скрутить брус относительно этого полюса (оси).
Статический момент площади
Статическим моментом площади плоской фигуры относительно оси, лежащей в той же плоскости, называется взятая по всей площади сумма произведений элементарных площадок (Si) на расстояния (ri)от них до этой оси.
Если упростить это определение, то статический момент инерции плоской фигуры относительно какой-либо оси (лежащей в той же плоскости, что и фигура) можно получить следующим образом:
- разбить фигуру на крохотные (элементарные) площадки (рис. 1);
- умножить площадь каждой площадки на расстояние ri от ее центра до рассматриваемой оси;
- сложить полученные результаты.
Статический момент площади плоской фигуры обозначают S с индексом оси, относительно которой он рассматривается: Sx , Sy , Sz .
Примечание: в разных учебниках или других источниках информации обозначение тех или иных физических величин может отличаться от приведенных на этом сайте. Как вы понимаете, от условного обозначения величин суть описываемых явлений и закономерностей не изменяется.
Анализ этих формул позволяет сделать вывод, что статический момент площади фигуры относительно оси, лежащей в этой же плоскости, равен произведению площади фигуры на расстояние от ее центра тяжести до этой оси.
Из этого вывода следует еще один вывод — если рассматриваемая ось проходит через центр тяжести плоской фигуры, то статический момент этой фигуры относительно данной оси равен нулю.
Единица измерения статического момента площади — метр кубический (м 3 ).
При определении статического момента площади сложной фигуры можно применять метод разбиения, т. е. определять статический момент всей фигуры, как алгебраическую сумму статических моментов отдельных ее частей. При этом сложная геометрическая фигура разбивается на простые по форме составные части — прямоугольники, треугольники, окружности, дуги и т. п., затем для каждой из этих простых фигур подсчитывается статический момент площади, и определяется алгебраическая сумма этих моментов.
Полярный момент инерции
Полярным моментом инерции плоской фигуры относительно полюса (точки), лежащего в той же плоскости, называется сумма произведений элементарных площадок (Si) этой фигуры на квадрат их расстояний (r 2 i) до полюса.
Полярный момент инерции обозначают Iρ (иногда его обозначают Jρ ), а формула для его определения записывается так:
Единица измерений полярного момента инерции — м 4 , из чего следует, что он не может быть отрицательным.
Понятие полярного момента инерции понадобится при изучении деформаций кручения круглых валов, поэтому приведем формулы для определения полярного момента квадратного, круглого и кольцевого сечения.
Видео:Геометрические характеристики. Моменты инерции. Радиусы инерции. Сопромат.Скачать
iSopromat.ru
Рассмотрим формулы для определения геометрических характеристик плоских сечений: статического момента площади фигуры, осевых моментов инерции и радиуса инерции сечения.
При расчете элементов конструкций на прочность, жесткость и устойчивость приходится кроме общеизвестной характеристики – площади поперечного сечения A, оперировать такими геометрическими характеристиками сечений, как статический момент площади, момент инерции, момент сопротивления, радиус инерции.
Видео:Статический момент площади сечения (фигуры) относительно осиСкачать
Статический момент площади
Интегралы вида:
называются статическими моментами площади сечения A относительно осей X и Y соответственно.
В тех случаях, когда сечение может быть разделено на простейшие фигуры площади Ai и координаты центров тяжести xi и yi которых известны, статические моменты площади сложной фигуры определяются через суммирование
Статические моменты площади имеют размерность [м 3 ] и могут принимать любые числовые значения. Для осей XC, YC, проходящих через центр тяжести сечения C (центральные оси), статические моменты равны нулю:
Координаты центров тяжести сечения определяются относительно так называемых вспомогательных осей по формулам:
Если сечение имеет ось симметрии, то центр тяжести находится на этой оси и его положение определяется одной координатой.
При наличии двух и более осей симметрии центр тяжести совпадает с точкой пересечения этих осей.
Видео:Моменты инерции Прямоугольника ► Вывод моментов инерции для прямоугольникаСкачать
Моменты инерции
Моментами инерции площади сечения называют интегралы вида:
где:
Ix, Iy — осевые моменты инерции площади сечения относительно осей OX, OY соответственно;
Ixy — центробежный момент инерции;
Iρ — полярный момент инерции.
Размерность момента инерции [м 4 ], Ix, Iy, I ρ всегда положительны, Ixy может принимать любые значения, при этом, если хотя бы одна из осей является осью симметрии, Ixy=0.
Зависимости между моментами инерции относительно параллельных осей выражаются формулами:
где a, b – расстояния между осями X, XC и Y, YC.
Оси, относительно которых Ixy=0, называют главными, а осевые моменты инерции относительно них – главными моментами инерции.
Главные оси, проходящие через центр тяжести сечения, называют главными центральными осями, а соответствующие им моменты инерции – главными центральными моментами инерции.
Главные оси характерны тем, что их моменты инерции принимают экстремальные значения (Imax, Imin).
Момент инерции сложного сечения относительно какой-либо оси находится суммированием моментов инерции составляющих его частей относительно той же оси:
Видео:6. Определение характеристик сечения ( практический курс по сопромату )Скачать
Радиусы инерции
Величины
называют радиусами инерции сечения относительно осей OX и OY соответственно.
Эллипс, построенный в главных осях, с полуосями, равными главным радиусам инерции
называют эллипсом инерции.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:Вычисление моментов инерции составного сеченияСкачать
Геометрические характеристики плоских сечений
Страницы работы
Содержание работы
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ.
Как показывает опыт, сопротивление стержня различным деформациям зависит не только от размеров поперечного сечения, но и от формы.
Размеры поперечного сечения и форма характеризуются различными геометрическими характеристиками: площадь поперечного сечения, статические моменты, моменты инерции, моменты сопротивления и др.
1. Статический момент площади (момент инерции первой степени).
Статический моментом инерции площади относительно какой-либо оси, называется сумма произведений элементарных площадок на расстояние до этой оси, распространенная на всю площадь (рис. 1)
Рис.1
Свойства статического момента площади:
1. Статический момент площади измеряется в единицах длинны третьей степени (например, см 3 ).
2. Статический момент может быть меньше нуля, больше нуля и, следовательно, равняться нулю. Оси, относительно которых статический момент равен нулю, проходят через центр тяжести сечения и называются центральными осями.
Если xcиyc – координаты цента тяжести, то
3. Статический момент инерции сложного сечения относительно какой-либо оси равен сумме статических моментов составляющих простых сечений относительно той же оси.
Понятие статического момента инерции в науке о прочности используется для определения положения центра тяжести сечений, хотя надо помнить, что в симметричных сечениях центр тяжести лежит на пересечении осей симметрии.
2. Момент инерции плоских сечений ( фигур ) (моменты инерции второй степени).
а) осевой (экваториальный) момент инерции.
Осевым моментом инерции площади фигуры относительно какой-либо оси называется сумма произведений элементарных площадок на квадрат расстояния до этой оси распространения на всю площадь (рис. 1 )
Свойства осевого момента инерции.
1. Осевой момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4 ).
2. Осевой момент инерции всегда больше нуля.
3. Осевой момент инерции сложного сечения относительно какой-либо оси равен сумме осевых моментов составляющих простых сечений относительно той же оси:
4. Величина осевого момента инерции характеризует способность стержня (бруса) определенного поперечного сечения сопротивляться изгибу.
б) Полярный момент инерции.
Полярным моментом инерции площади фигуры относительно какого-либо полюса называется сумма произведений элементарных площадок на квадрат расстояния до полюса, распространенная на всю площадь (рис. 1).
Свойства полярного момента инерции:
1. Полярный момент инерции площади измеряется в единицах длины четвертой степени ( например, см 4 ).
2. Полярный момент инерции всегда больше нуля.
3. Полярный момент инерции сложного сечения относительно какого-либо полюса (центра) равен сумме полярных моментов составляющих простых сечений относительно этого полюса.
4. Полярный момент инерции сечения равен сумме осевых моментов инерции этого сечения относительно двух взаимно перпендикулярных осей, проходящих через полюс.
5. Величина полярного момента инерции характеризует способность стержня (бруса) определенной формы поперечного сечения сопротивляться кручению.
в) Центробежный момент инерции.
ЦЕНТРОБЕЖНЫМ МОМЕНТОМ ИНЕРЦИИ площади фигуры относительно какой-либо системы координат называется сумма произведений элементарных площадок на координаты, распространенная на всю площадь (рис. 1)
Свойства центробежного момента инерции:
1. Центробежный момент инерции площади измеряется в единицах длинны четвертой степени (например, см 4 ).
2. Центробежный момент инерции может быть больше нуля, меньше нуля, и равняться нулю. Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции. Две взаимно перпендикулярные оси, из которых хотя бы одна является осью симметрии, будут главными осями. Главные оси, проходящие через центр тяжести площади, называются главными центральными осями, а осевые моменты инерции площади – главными центральными моментами инерции.
3. Центробежный момент инерции сложного сечения в какой-либо системе координат равен сумме центробежных моментов инерции составляющих фигур в той же схеме координат.
МОМЕНТЫ ИНЕРЦИИ ОТНОСИТЕЛЬНО ПАРАЛЛЕЛЬНЫХ ОСЕЙ.
Рис.2
Дано: оси x, y – центральные;
т.е. осевой момент инерции в сечении относительно оси, параллельной центральной, равен осевому моменту относительно своей центральной оси плюс произведение площади на квадрат расстояния между осями. Отсюда следует, что осевой момент инерции сечения относительно центральной оси имеет минимальную величину в системе параллельных осей.
Сделав аналогичные выкладки для центробежного момента инерции, получим:
т.е. центробежный момент инерции сечения относительно осей, параллельных центральной системе координат, равен центробежному моменту в центральной системе координат плюс произведение площади на расстояние между осями.
МОМЕНТЫ ИНЕРЦИИ В ПОВЕРНУТОЙ СИСТЕМЕ КООРДИНАТ
т.е. сумма осевых моментов инерции сечения есть величина постоянная, не зависит от угла поворота осей координат и равна полярному моменту инерции относительно начала координат. Центробежный момент инерции может менять свою величину и обращаться в «0».
Оси, относительно которых центробежный момент равен нулю будут главными осями инерции, а если они проходят через центр тяжести, то они называются главными осями инерции и обозначаются «u» и «».
Моменты инерции относительно главных центральных осей называются главными центральными моментами инерции и обозначаются , причем главные центральные моменты инерции имеют экстремальные значения, т.е. один «min», а другой «max».
Пусть угол «a0» характеризует положение главных осей, тогда:
по этой зависимости определяем положение главных осей. Величину же главных моментов инерции после некоторых преобразований, определяем по следующей зависимости:
ПРИМЕРЫ ОПРЕДЕЛЕНИЯ ОСЕВЫХ МОМЕНТОВ ИНЕРЦИИ, ПОЛЯРНЫХ МОМЕНТОВ ИНЕРЦИИ И МОМЕНТОВ СОПРОТИВЛЕНИЯ ПРОСТЕЙШИХ ФИГУР.
1. Прямоугольное сечение
Оси x и y – здесь и в других примерах – главные центральные оси инерции.
Определим осевые моменты сопротивления:
2. Круглое сплошное сечение. Моменты инерции.
3. Кольцевое сечение.
🎦 Видео
Момент инерцииСкачать
9.1. Геометрические характеристики плоских сечений. Общие сведения. Статический момент площадиСкачать
5. Момент инерции простейших телСкачать
Сопротивление материалов. Лекция: геометрические характеристики сечений - моменты инерцииСкачать
Моменты инерции простейших фигур. Оси центральные и главные. Что это и где. #сопроматСкачать
Определение центра тяжести сложной фигуры. СопроматСкачать
Сопротивление материалов. Лекция 10 (геометрические характеристики плоских фигур).Скачать
Основы сопромата. Задача 4. Момент инерции сложного сеченияСкачать
Урок 98. Задачи на вычисление моментов инерции (ч.1)Скачать
Определение осевых моментов инерции составного несимметричного сечения. СопроматСкачать
Теория (часть 1) осевые моменты инерцииСкачать
Момент инерции круга. Моменты инерции простых фигур. #сопроматСкачать