как найти площадь в solidworks

Видео:Solidworks. Мерная кружка. ВЫЧИСЛЯЕМ номинальный ОБЪЕМСкачать

Solidworks. Мерная кружка. ВЫЧИСЛЯЕМ  номинальный ОБЪЕМ

База знаний по трехмерному проектированию в Pro/Engineer, Creo, Solidworks, электронике на STM32

Обучение Solidworks 2013. Отображение параметров моделей в чертежах

Solidworks как параметрическая САПР позволяет использовать значения размеров и параметры для ввода в уравнения и в текстовые заметки. В этом уроке вы научитесь:

  • Использовать значения размеров в уравнениях.
  • Использовать глобальные параметры Solidworks для пользовательских параметров.
  • Изменять единицы измерения глобальных параметров Solidworks.
  • Добавлять вручную значения пользовательских параметров в текстовые заметки чертежа.
  • Добавлять значения пользовательских параметров в чертеже с помощью интерфейса Solidworks.
  • Добавлять вручную значения размеров модели в текстовые заметки чертежа.

Видео:Определение центра масс и массы в SolidWorksСкачать

Определение центра масс и массы в SolidWorks

Поверхностное моделирование в SolidWorks

Различают как минимум три технологии построения геометрических моделей: твердотельное, поверхностное и каркасное моделирование. Каждая из этих технологий имеет свои преимущества и недостатки, однако их совместное использование позволяет получить хороший инструмент для решения большинства задач, встречающихся в инженерной практике. Не сомневаюсь, что с основами твердотельного моделирования в SolidWorks многие читатели журнала «САПР и графика» хорошо знакомы по своему опыту либо по нашим регулярным публикациям. Поэтому в данной статье мы более подробно рассмотрим работу с поверхностями и их взаимодействие с твердотельной геометрией.

Видео:Площадь в Автокаде как посчитать, измерить площадь фигур и штриховокСкачать

Площадь в Автокаде   как посчитать, измерить площадь фигур и штриховок

Типы поверхностей в SolidWorks

Поверхности принципиально отличаются от твердых тел тем, что имеют нулевую толщину, но в то же время у них много общего с твердыми телами — например похожие способы построения.

В SolidWorks можно создавать следующие типы поверхностей:

плоская поверхность — получается заполнением плоского контура (2D-эскиз или набор замкнутых кромок, лежащих в одной плоскости);

поверхность вытяжки — образуется в результате плоскопараллельного вытягивания замкнутого или разомкнутого 2D/3D-эскиза в направлении, перпендикулярном плоскости эскиза, или под произвольным углом;

поверхность вращения — получается вращением произвольного профиля (2D-эскиз) относительно оси;

поверхность по траектории — создается движением 2D/3D-эскиза вдоль криволинейной образующей (2D/3D-эскиз, 3D-кривая) и произвольного числа направляющих кривых (2D/3D-эскиз, 3D-кривая), деформирующих исходный контур;

поверхность по сечениям — аналог поверхности по траектории; отличается тем, что строится не по одному, а по нескольким поперечным сечениям с направляющими кривыми;

граничная поверхность — аналог поверхности по сечениям; отличается тем, что строится по нескольким произвольно сориентированным в пространстве 3D-кромкам других поверхностей с сохранением касательности к ним и с соблюдением непрерывности по второй производной (гладкая стыковка); при построении могут использоваться направляющие кривые;

поверхность свободной формы — строится разбиением сетки с управляющими точками на поверхности грани 3D-модели; изменение формы поверхности достигается перетаскиванием контрольных точек;

эквидистантная поверхность — получается смещением на определенное расстояние от существующих граней или поверхностей;

поверхность разъема — используется при проектировании литейных форм в качестве вспомогательной геометрии для разделения матрицы и пуансона;

срединная поверхность — создается на середине (или заданном проценте) толщины тонкостенной детали;

линейчатая поверхность — строится под углом к выбранной кромке и предназначена для построения граней с уклоном;

импортированная поверхность — получается импортированием из внешнего файла в формате IGES и т.п.

Видео:Лайфхаки и хитрости в #SolidWorksСкачать

Лайфхаки и хитрости в #SolidWorks

Операции с поверхностями

Все вышеперечисленные типы поверхностей являются параметрическими и могут быть отредактированы путем изменения значений управляющих размеров либо с помощью специальных операций поверхностного моделирования.

С поверхностями можно выполнять следующие операции:

удлинение — дает возможность наращивать поверхность относительно внешних кромок. Удлинение можно выполнять с сохранением закона построения исходной поверхности или прямолинейно по касательной по линиям контура;

обрезка — дает возможность отсекать от исходной поверхности ее части с помощью других поверхностей, вспомогательных плоскостей или эскизов либо выполнять взаимную обрезку поверхностей;

заполнение — обеспечивает постановку «заплатки» на отверстие в поверхности с соблюдением касательности к исходной поверхности по замкнутому контуру;

наращивание — позволяет достроить, удлинить (восстановить) внешние контуры поверхности с соблюдением закона построения. Функция наращивания особенно полезна для работы с импортированными поверхностями;

сшивка — предназначена для объединения нескольких поверхностей в одну;

скругление (сопряжение) — обеспечивает построение гладкого сопряжения (зализа) между несоединенными поверхностями или скругления постоянного/переменного радиуса между поверхностями, имеющими общую кромку; функция также применима к твердым телам;

перемещение/вращение/копирование — позволяет двигать, вращать и копировать поверхности или твердые тела;

удаление — удаляет из модели поверхность или твердое тело.

Видео:Знакомство с SolidWorks Simulation (Урок №1)Скачать

Знакомство с SolidWorks Simulation (Урок №1)

Гибридное моделирование

Поверхностное моделирование находит применение в самых различных областях: автомобилестроении и аэрокосмической промышленности, кораблестроении, проектировании технологической оснастки, в сфере производства товаров народного потребления и т.д. Поверхности отлично работают в сочетании с твердотельными элементами, поэтому их можно использовать с целью:

• вытягивания твердотельного элемента или выреза с граничным условием «До поверхности» или «На расстоянии от поверхности»;

• создания твердотельного элемента путем придания поверхности толщины;

• заполнения замкнутого объема и получения твердого тела;

• выбора кромки и вершины поверхности, чтобы использовать их в качестве направляющей твердотельного элемента по кривой и по траектории;

• удаления грани твердого тела, замены грани поверхностью и т.п.

Как твердотельное, так и поверхностное моделирование имеет свои преимущества, однако использование поверхностей позволяет более гибко подходить к процессу проектирования, поскольку поверхности при моделировании могут быть самостоятельно спозиционированы в пространстве модели и не требуют на начальном этапе точной взаимной увязки с окружающей геометрией. Именно эти качества сделали поверхностное моделирование в первую очередь инструментом дизайнера, позволяющим быстро и в то же время качественно прорабатывать разные концепции будущих изделий и передавать концепт-модели конструктору на детальную проработку.

Видео:Поверхностное моделирование в SolidWorksСкачать

Поверхностное моделирование в SolidWorks

Пример построения модели в SolidWorks с использованием технологии поверхностного моделирования

Рассмотрим основные принципы поверхностного моделирования в среде САПР SolidWorks на примере создания детали «форсунка» (рис. 1), построение которой выполняется по набору 2D- и 3D-эскизов. Методика построения этой модели подробно рассматривается в упражнении «Поверхности» интерактивного учебного пособия «Функциональные инструкции SolidWorks» (вызывается из меню «Справка»), что дает пользователю возможность самостоятельно изучить основные принципы построения 3D-модели с использованием технологии поверхностного моделирования.

как найти площадь в solidworks

Рис. 1. Учебный пример использования технологии поверхностного моделирования

Прочитав статью, вы сможете самостоятельно выполнить это упражнение в SolidWorks и научиться пользоваться такими функциями, как Поверхность по сечениям, Поверхность по траектории, Поверхность вращения, Поверхность вытяжки, Плоская поверхность, Сшивка поверхностей, Заполнение отверстий, Зеркальное отражение, Обрезка, Удлинение, Наращивание, Перемещение/вращение/копирование, Придание толщины и др.

Начнем построение с формирования основных геометрических элементов детали «Форсунка»: основания, рукоятки, сопла. Для работы нам потребуется панель инструментов Поверхности, которую можно подключить, щелкнув правой клавишей мыши по любым другим панелям инструментов и поставив галочку напротив пункта Поверхности. Расположите панель инструментов Поверхности так, чтобы вам было удобно с ней работать. Основание форсунки можно сформировать, построив поверхность по двум сечениям, каждое из которых представляет собой окружность (рис. 2). Построение поверхности по сечениям во многом похоже на построение твердого тела по сечениям, то есть имеет практически те же управляющие параметры (нужно задать сечения, направляющие кривые, условия старта/финиша и т.п.).

как найти площадь в solidworks

Рис. 2. Построение основания форсунки с помощью поверхности по сечениям

Рукоятку форсунки сформируем с помощью другой команды 3D-моделирования — Поверхность по траектории (рис. 3). Обратите внимание на то, что для придания рукоятке формы, удобной для расположения пальцев руки, используется специальная направляющая кривая (отдельно построенный эскиз). Сопло форсунки также создадим с помощью команды Поверхность по траектории (рис. 4).

как найти площадь в solidworks

Рис. 3. Построение рукоятки форсунки с помощью поверхности по траектории

как найти площадь в solidworks

Рис. 4. Построение сопла форсунки с помощью поверхности по траектории

Далее нам предстоит выполнить несколько дополнительных операций, необходимых для сопряжения геометрических элементов форсунки, построенных на предыдущем этапе. Сначала разделим поверхность — основание форсунки (поверхность по сечениям, которую мы создали в самом начале) и поверхность рукоятки на несколько граней. Это необходимо сделать для того, чтобы потом использовать вновь полученные грани для соединения между собой основания, рукоятки и сопла форсунки. Для разделения поверхности воспользуемся инструментом Линия разъема. Теперь для того, чтобы конструктивно связать между собой основание, рукоятку и сопло, необходимо последовательно построить три поверхности по сечениям, попарно соединяющие эти объекты между собой, как показано на рис. 5, 6 и 7. При построении можно применять инструменты управления касательностью для более гладкого сопряжения поверхностей.

как найти площадь в solidworks

Рис. 5. Соединение рукоятки и сопла

как найти площадь в solidworks

Рис. 6. Соединение основания и рукоятки

как найти площадь в solidworks

Рис. 7. Соединение сопла и основания

Теперь, когда мы выполнили попарное соединение основания, рукоятки и сопла, в модели образовались два симметричных боковых отверстия, которые необходимо заполнить материалом. Для этого сначала потребуется сшить все построенные ранее поверхности воедино с помощью команды Сшивка, которая специально предназначена для объединения нескольких поверхностей в одну. В результате сшивки мы получили одну поверхность с двумя отверстиями. Заполним одно из этих отверстий материалом поверхности с помощью функции Заполнение (рис. 8). Данная функция обеспечивает постановку «заплатки» на отверстие в поверхности с соблюдением касательности к исходной поверхности по замкнутому контуру. Именно для получения замкнутого контура мы и провели предварительную сшивку.

как найти площадь в solidworks

Рис. 8. Заполнение отверстия материалом поверхности

как найти площадь в solidworks

Рис. 9. Построение поверхности вращения

Для заполнения второго отверстия также можно воспользоваться функцией Заполнение, однако есть более простой способ — он напрашивается сам собой, поскольку деталь симметричная: построим Зеркальное отражение поверхности относительно плоскости симметрии модели. Далее доработаем основание форсунки, выполнив зашивку торцевых отверстий плоскими поверхностями и еще одну сшивку всех построенных ранее поверхностей в единую поверхность. После этого воспользуемся функцией Поверхность вращения для построения новой поверхности, пересекающейся с уже построенной геометрией и наращивающей длину основания детали (рис. 9). Поверхность вращения создается на основе двумерного профиля (эскиза).

Выполним взаимную обрезку поверхностей, полученных на предыдущих этапах сшивкой и вращением. Для этого воспользуемся функцией Обрезка, которая позволяет отсекать от исходной поверхности ее части с помощью других поверхностей, вспомогательных плоскостей или эскизов либо выполнять взаимную обрезку поверхностей. В результате операции обрезки мы должны будем получить пересечение поверхностей, которое будет выглядеть как на рис. 10.

как найти площадь в solidworks

Рис. 10. Результат работы функции обрезки

Теперь нам предстоит окончательно доработать поверхностную модель детали «форсунка» и преобразовать ее в твердотельную. Создадим вспомогательные поверхности методом вытяжки для того, чтобы на следующих этапах использовать их в качестве инструментов для обрезки. Для этого воспользуемся функцией Поверхность вытяжки. Далее построим поверхность, смещенную на заданное расстояние от созданной поверхности вытяжки. Воспользуемся для этого командой Эквидистантная поверхность. Развернем эквидистантную поверхность на 90° вокруг оси Y. Для этого воспользуемся функцией Перемещение/вращение/копирование, которая позволяет двигать, вращать и копировать поверхности или твердые тела. Сделаем дополнительные вырезы в основании форсунки с помощью созданной на предыдущем этапе поверхности. Для этого применим функцию Обрезка (рис. 11).

как найти площадь в solidworks

Рис. 11. Поворот эквидистантной поверхности на 90° и выполнение обрезки основания форсунки этой поверхностью

Теперь немного удлиним основание детали. Воспользуемся для этого функцией Удлинение, которая позволяет наращивать поверхность относительно внешних кромок (рис. 12). Удлинение можно выполнять с сохранением закона построения исходной поверхности или прямолинейно по касательной по линиям контура.

как найти площадь в solidworks

Рис. 12. Удлинение поверхностей основания детали относительно выбранных кромок

Для придания изделию товарного вида необходимо притупить острые кромки. Воспользуемся для этого функцией Скругление. Построим на торцевой поверхности рукоятки скругление переменного радиуса (рис. 13). Как и в предыдущем случае, будем использовать для этого функцию Скругление. Для создания отверстия в сопле построим эскиз (окружность) и отрежем им лишний материал.

как найти площадь в solidworks

Рис. 13. Скругление острой кромки на поверхности рукоятки

Поскольку в реальной жизни любая тонкостенная оболочка представляет собой тело определенной толщины, преобразуем созданную нами поверхностную модель в твердотельную. Воспользуемся функцией Придать толщину (рис. 14).

Для подтверждения того, что мы, придав поверхности толщину, получили полноценное твердое тело, построим твердотельную фаску. Для этого в графическом окне выберем внешнюю кромку отверстия в сопле и используем команду Фаска (рис. 15).

как найти площадь в solidworks

Рис. 14. Придание толщины поверхностям для получения твердотельной модели

как найти площадь в solidworks

Рис. 15. Построение фаски

Видео:Ответ №7 (Свойства деталей SolidWorks)Скачать

Ответ №7 (Свойства деталей SolidWorks)

Отличительные особенности SolidWorks 2007

Для придания изделиям более современного вида и эргономичности, в новую, 2007-ю версию САПР SolidWorks включены специальные функции 3D-моделирования, среди которых особого внимания заслуживает, пожалуй, инструмент создания поверхностей свободной формы, позволяющий перетаскивать точки управления для создания стильных поверхностей (рис. 16), а также граничных поверхностей, при построении которых ведется контроль непрерывности кривизны по второй производной. Используя freeform-моделирование, дизайнеры-пользователи SolidWorks получают удобный и мощный инструмент, который позволяет выполнять проекты за меньшее время по сравнению с применением обычных команд для работы с поверхностями.

как найти площадь в solidworks

Рис. 16. Создание поверхностей свободной формы

Другой новой интересной функциональной особенностью SolidWorks 2007 стала функция ScanTo3D, позволяющая пользователям автоматически получать объемные модели, используя сканированные данные с реальных физических прототипов (рис. 17). Данная новинка должна заинтересовать в первую очередь профессиональных дизайнеров, конструкторов и инженеров, рабочим инструментом которых является современная система объемного моделирования. Реализация функции ScanTo3D на уровне базового функционала SolidWorks не имеет аналогов на рынке САПР и является перспективным направлением для развития CAD-систем в будущем. Данная функция встроена в базовый пакет SolidWorks 2007 Premium и имеет удобный пользовательский интерфейс в виде программы-мастера, разъясняющей пользователю все шаги процесса 3D-сканирования и импорта данных, а также получения готовой 3D-модели. Программа ScanTo3D оптимизирована для использования с новым полноцветным сканером высокого разрешения Desktop 3D Scanner от компании NextEngine (www.nextengine.com), являющейся партнером корпорации SolidWorks по созданию решений. Помимо непосредственной работы со сканером NextEngine, функция ScanTo3D поддерживает ряд других распространенных форматов трехмерного сканирования, например XYZ, CSV и сеточных форматов STL, VRML, 3ds, PLY, OBJ, позволяя в интерактивном или автоматическом режиме управлять качеством исходных данных и получать на их основе поверхностные и твердотельные модели.

как найти площадь в solidworks

как найти площадь в solidworks

Рис. 17. Последовательное преобразование облака точек в сеточную, поверхностную и твердотельную модели

Таким образом, корпорация SolidWorks продолжает совершенствовать свои программные продукты и развивать новые перспективные направления, аккумулируя передовые наукоемкие технологии. Именно поэтому САПР SolidWorks по праву занимает лидирующие позиции в мировом рейтинге систем 3D-моделирования, а сотни изобретений и новейших технологических решений, впервые реализованных в SolidWorks, становятся классикой в разработке CAD-приложений и используются большинством производителей САПР по всему миру.

Видео:Урок 1. Простые фигуры в SolidWorks.Скачать

Урок 1. Простые фигуры в SolidWorks.

Глобальные переменные и проектирование с использованием формул

Проектирование несложных деталей и сборок на первый взгляд кажется простым и интуитивным занятием. Но когда возникает потребность что-либо поменять, часто оказывается, что лучше начать все сначала, а не редактировать то, что уже сделано.

К счастью, в SOLIDWORKS реализован механизм работы с формулами, который помогает полностью определить геометрию модели, а также задать взаимосвязи и наложить зависимости. Для инженеров-конструкторов это важно, поскольку поведение систем часто опирается на динамические отношения величин, зависящие от различных геометрических параметров.

Пусть, например, вы проектируете форсунку, распыляющую жидкость или газ. Возможно, при этом потребуется подбирать диаметр ее
отверстий, принимая во внимание входной диаметр или рабочее давление.

В SOLIDWORKS это делается легко. Варьируя значения параметров, можно оценивать варианты, не перестраивая модель каждый раз вручную. Однако в этой статье мы не пойдем так далеко, а спроектируем обычную разбрызгивающую насадку, связав ее размеры между собой с помощью набора несложных формул.

Формулы можно применять как к эскизной геометрии, так и к 3D-модели. Принципы в обоих случаях сходны. Поработаем для начала с элементами эскиза.

Формулы, глобальные переменные и размеры

Рассмотрим, как задаются размеры и формулы. Выберите «Tools» > «Equations».
Открывается диалоговое окно «Equations, Global Variables and Dimensions».

Работа с формулами в основном ведется в этом окне.

Глобальные переменные

Для управления формулами и размерами часто используют глобальные переменные. Пусть, например, в вашем механизме используется отрезок трубы, длину которого неплохо сделать связанной с каким-либо другим размером в зависимости от места установки.
Тогда можно ввести в проект глобальную переменную «PipeLimit»,которая ограничивает максимальную длину трубы. При создании конкретного отрезка трубы его длина задается в формуле как доля от предельного значения. Пока эта доля не превышает 1, все остается корректным.
Если же отрезок трубы оказывается чересчур длинным, контроль пределов можно подавить.

Практическое упражнение

Создание модели в SOLIDWORKS начинается с эскиза. Постройте две концентрические окружности диаметром 100 мм и 90 мм.

Теперь наступает важный момент: нам нужно сделать эти размеры интеллектуальными, чтобы они распознавались функцией работы с формулами.
Не выходя из режима эскиза, выберите «Smart Dimension» и укажите диаметр внешней окружности. Назовите размер «Outer».
Повторите действия для внутренней окружности и назовите ее размер «Inner».

Теперь в диалоговом окне «Equations, Global Variables and Dimensions» (см. ниже) на вкладке «Dimension View» (обведено красным), в разделе «Dimensions» отображаются интеллектуальные размеры из эскиза.

Вернитесь к эскизу и постройте еще две концентрические окружности внутри двух предыдущих. Преобразуйте их во вспомогательную
геометрию, щелкнув правой кнопкой на каждом эскизе и выбрав «Construction Geometry». Пока не нужно беспокоиться о точных диаметрах; в дальнейшем мы свяжем их с глобальной переменной. Все, что нужно сделать сейчас — это выбрать «Smart Dimension» и назвать размеры «D1» и «D2».

Постройте две небольшие окружности, центры которых лежат на вспомогательных окружностях. С помощью инструмента «Smart Dimension» назовите их диаметры «OuterHole» (для внешней) и «InnerHole» (для внутренней).

Далее создайте круговой массив из только что построенных окружностей. Расположите по четыре экземпляра равномерно по кругу. Теперь у нас есть восемь будущих отверстий в детали.

С эскизом мы закончили. Применим к элементам операцию вытягивания.
Начните с наружного кольца — области между эскизными элементами, которые мы назвали «Inner» и «Outer» (см. ниже). Вытяните его на высоту 10 мм.

Далее вытяните внутреннюю область (основание), убедившись предварительно, что не оказались выбранными восемь небольших окружностей. Задайте высоту 3 мм. Если все сделано правильно, твердотельная модель будет выглядеть, как показано ниже.

О формулах и глобальных переменных

Итак, мы создали твердотельную модель из эскиза с интеллектуальными размерами. Все эти размеры отображаются в диалоговом окне «Equations, Global Variables and Dimensions». Теперь мы можем начинать связывать их между собой, чтобы сделать более динамичными и реагирующими на изменения в конструкции детали.

Именно на этом этапе статическая деталь становится интеллектуальной.

Посмотрим на содержимое окна «Equations, Global Variables and Dimensions» после того, как мы задали в модели интеллектуальные размеры.

Щелчком на любом поле в столбце «Value/Equation» мы можем изменить значения размеров. Эскиз и твердотельная модель откликаются на эти изменения. Обратите внимание, что в окне перечислены не только размеры элементов эскиза, но и размеры вытянутой 3D-детали.

Модель еще довольно статична, но уже хорошо, что все значения размеров сконцентрированы в одном диалоговом окне. Если нам требуется изменить какой-либо параметр, мы находим и редактируем его, будучи уверенными, что модель будет перестроена. Не нужно опасаться, что каждый раз придется возвращаться в режим эскиза и вручную корректировать значения.

Для того чтобы, например, изменить количество экземпляров в круговом массиве, следует просто щелкнуть в поле «Value/Equation» для размера CircularPat@Sketch1 и либо увеличить, либо уменьшить значение.

Пусть количество отверстий потребовалось довести до 12. Тогда нужно ввести 6 в поле CircularPat (вспомним, что при создании массива было выбрано два отверстия, значит 12 / 2 = 6). Впоследствии мы вновь обратимся к круговому массиву и зададим формулу для количества отверстий в нем.

Приступим к добавлению глобальных переменных. Вызовите диалоговое окно «Equations, Global Variables and Dimensions» и в разделе «Global Variables» добавьте глобальную переменную «OuterDiameter» со значением «= 100mm» в соответствующем поле «Value/Equation». Не забывайте начинать значения переменных со знака равенства (=).

Создайте еще одну глобальную переменную «HoleRadius» со значением «= 8mm».

Создайте еще одну глобальную переменную «HoleArea». Сейчас мы начнем использовать формулы. Как известно из курса математики, площадь круга равна произведению числа «пи» на квадрат радиуса.

В качестве значения «HoleArea» введите «= PI * “HoleRadius” ^ 2)».

На самом деле, вводить полностью название «HoleRadius» не нужно. Чтобы подставить его в поле, либо щелкните на названии переменной в списке, либо начните печатать название, а затем завершите ввод, выбрав название из предлагаемых в меню.

Теперь, когда глобальные переменные добавлены, мы можем ссылаться на них при задании размеров и создании формул. Пусть, например, требуется сделать так, чтобы размер эскиза «OUTER@Sketch1» всегда равнялся значению глобальной переменной «OuterDiameter». Тогда необходимо просто удалить первоначальное значение 100 мм для «OUTER@Sketch1» и щелкнуть мышью в пустом поле. Появляется всплывающее меню с различными опциями — в том числе опцией вставки глобальной переменной.

Глобальные переменные можно использовать в формулах для других элементов эскиза и модели.

Формулы

Создавать формулы в SOLIDWORKS достаточно просто. Глубоких познаний в программировании для этого не нужно — процесс аналогичен привычным расчетам в электронной таблице.

Предположим, что вы разрабатываете систему, по которой течет жидкость или газ, и хотите поддерживать относительно постоянной общую площадь отверстий в разбрызгивающей насадке, независимо от количества отверстий и диаметра каждого из них. Решено для этой цели менять соответствующим образом количество отверстий.
Пусть общая площадь выбрана равной 2400 кв.мм. Примем ее за постоянную величину и создадим новую глобальную переменную «TOTALholeAREA» со значением 2400 (см. ниже).

Сделаем так, чтобы количество отверстий, каким бы ни был их радиус, настраивалось так, чтобы поддерживать заданную общую площадь. Создадим для этого глобальную переменную «HolesNeeded» и выразим ее значение с помощью формулы.

Необходимое количество отверстий — это заданная общая площадь, деленная на площадь одного отверстия. Значение должно быть целым, поэтому воспользуемся функцией «Round» для округления. В поле «Value/Equation» для переменной «Holes Needed» следует применить синтаксис «= ROUND (“TOTALholeAREA” / “HoleArea”)». Не забудьте про круглые скобки, так как команда ROUND должна
быть применена ко всей дроби.

Теперь применим результат формулы к количеству экземпляров в круговом массиве. Как уже делалось ранее, удалите значение в поле «Value/Equation» для размера «CircularPat@Sketch1» и свяжите его с переменной «HolesNeeded».

Значение делится на 2, так как массив формировался на основе двух отверстий: с наружной и внутренней стороны.

Проверка

Модель готова, и теперь можно проверить, как действуют взаимосвязи внутри нее. Если все сделано правильно, при изменении диаметра отверстия в разделе «Global Variable» количество отверстий будет подстраиваться так, чтобы поддерживать общую площадь.
Описанная техника может быть применена для форсунок, инжекторов и других компонентов, требующих постоянного потока. Мы рассмотрели простейший случай, но динамика жидкостей и газов, конечно же, им не ограничивается. Задач много, и ваша инженерная мысль обязательно подскажет вам, какие переменные задать и как правильно связать их формулами.

Узнать подробнее о SOLIDWORKS 2019, Вы можете также на странице или в нашем блоге

Подписывайтесь на новости Dassault Systèmes и всегда будьте в курсе инноваций и современных технологий.

📹 Видео

Как задать длину дуги в SolidWorksСкачать

Как задать длину дуги в SolidWorks

Расчет стоимости изделия в SolidWorks CostingСкачать

Расчет стоимости изделия в SolidWorks Costing

SolidWorks для самых начинающих. Часть 1Скачать

SolidWorks для самых начинающих. Часть 1

Solidworks: Таблица параметров. Размер по имени. Configuration table.Скачать

Solidworks: Таблица параметров. Размер по имени. Configuration table.

Geodesic Structure in Solidworks. Watch the full tutorial on my YouTube channel. #solidworksСкачать

Geodesic Structure in Solidworks. Watch the full tutorial on my YouTube channel. #solidworks

Иран наносит удар и Когда упадут цены в магазинах?Скачать

Иран наносит удар и Когда упадут цены в магазинах?

Уравнения в Solid WorksСкачать

Уравнения в Solid Works

SolidWorks. 5 самых распространенных ошибок начинающихСкачать

SolidWorks. 5 самых распространенных ошибок начинающих

Шаг 32 Формулы solid worksСкачать

Шаг 32  Формулы solid works

Как определить вес в SolidworksСкачать

Как определить вес в Solidworks
Поделиться или сохранить к себе: