как найти площадь сжатия

Видео:Определение усилий, напряжений и перемещений. СопроматСкачать

Определение усилий, напряжений и перемещений. Сопромат

iSopromat.ru

как найти площадь сжатия

Подборка формул для расчета элементов и конструкций на растяжение-сжатие и решения задач сопротивления материалов по расчету нормальных напряжений, деформаций и перемещения сечений стержней при продольном нагружении.

Обозначения в формулах:

как найти площадь сжатия

Формула для расчета напряжений в поперечном сечении стержня

как найти площадь сжатия

как найти площадь сжатия

Расчет минимальной площади поперечного сечения бруса

как найти площадь сжатия

Расчет допустимой величины внешней растягивающей/сжимающей силы (определение грузоподъемности)

как найти площадь сжатия

как найти площадь сжатия

Расчет перемещения сечений

как найти площадь сжатия
Здесь: δ i — перемещение рассматриваемого сечения,
δ i-1 — перемещение предыдущего сечения,
Δ li — деформация участка между указанными сечениями.

как найти площадь сжатия

Здесь α — угол отклонения сечения от поперечного.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Видео:РАСТЯЖЕНИЕ-СЖАТИЕ. Построение эпюр. Сопромат.Скачать

РАСТЯЖЕНИЕ-СЖАТИЕ. Построение эпюр. Сопромат.

Тема 2.2. Растяжение и сжатие

Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только продольные силы N, а прочие силовые факторы (поперечные силы, крутящий и изгибающий моменты) равны нулю.

Это самый простой и часто встречающийся вид деформации. Обычно он наблюдается когда внешняя нагрузка действует вдоль продольной оси стержня. Продольной осью стержня называется линия, проходящая через центры тяжести поперечных сечений.

Обычным является растяжение стержня силами, приложенными к его концам. Передача усилий к стержню может быть осуществлена различными способами, как это показано на рис. 1.

Рис. 1. Растяжение стержня

Во всех случаях, однако, система внешних сил образует равнодействующую F, направленную вдоль оси стержня. Поэтому независимо от условий крепления растянутого стержня, расчетная схема в рассматриваемых случаях (рис. 1, а, б) оказывается единой (рис. 1, в) согласно принципу Сен – Венана.

Если воспользоваться методом сечений (рис. 2), то становится очевидным, что во всех поперечных сечениях стержня возникают нормальные силы Nz, равные силе F (рис. 2, б).

Сжатие отличается от растяжения, формально говоря, только знаком силы Nz. При растяжении нормальная сила Nz направлена от сечения (рис. 2, б), а при сжатии – к сечению.

Рис. 2. Нормальная сила N

Растягивающие продольные силы принято считать положительными (рис. 3, а), а сжимающие – отрицательными (рис. 3, б).

Рис. 3. Знак продольной силы N

При расчете стержней, испытывающий деформацию растяжения, на прочность и жесткость при статическом действии нагрузки, надо решить две основные задачи. Это определение напряжений (от Nz), возникающих в стержне, и нахождение линейных перемещений в зависимости от внешней нагрузки.

Продольные силы (Nz), возникающие в поперечных сечениях стержня, определяются по внешней нагрузке с помощью метода сечений.

График, показывающий изменение продольных сил по длине оси стержня, называется эпюрой продольных сил (эп. Nz). Он дает наглядное представление о законе изменения продольной силы.

Осью абсцисс служит ось стержня. Каждая ордината графика – продольная сила (в масштабе сил) в данном сечении стержня.

Эпюра позволяет определить, в каком сечении действует максимальное внутреннее усилие (например, найти Nmax при растяжении-сжатии). Сечение, где действует максимальное усилие будем называть опасным.

Перед построением эпюр необходимо освободить брус, в котором будем строить эпюры от опорных связей (выделить объект равновесия) и приложить к нему все действующие внешние силы (активные и реактивные). Затем необходимо установить границы участков, в пределах которых закон изменения внутренних сил постоянный. Границами таких участков являются сечения, где приложены сосредоточенные силы или начинается и кончается распределенная нагрузка, а также сечения, где имеется перелом стержня.

Применяя метод сечений и учитывая правила знаков изложенные выше, получаем уравнения изменения внутренних сил в пределах длины каждого участка бруса. Затем, используя, полученные зависимости строим графики (эпюры) этих усилий. Ординаты эпюр в определенном масштабе откладываем от базисной линии, которую проводим параллельно оси бруса.

На основании метода сечений продольная сила в произвольном поперечном сечении стержня численно равна алгебраической сумме проекций внешних сил, приложенных к стержню по одну сторону от рассматриваемого сечения, на его продольную ось.

Причем проекция внешней силы берется со знаком плюс, если сила растягивает часть стержня от точки ее приложения до рассматриваемого сечения и, наоборот, со знаком минус – если сжимает.

§2. Напряжение в поперечных сечениях стержня

При растяжении или сжатии осевыми силами стержней из однородного материала поперечные сечения, достаточно удаленные от точек приложения внешних сил ,остаются плоскими и перемещаются поступательно в направлении деформации. Это положение называют — гипотезой плоских сечений. На основании указанного можно заключить, что все точки какого-либо поперечного сечения стержня находятся в одинаковых условиях и, следовательно, напряжения распределяются по сечению равномерно. Эти напряжения перпендикулярны поперечному сечению, а значит, являются нормальными напряжениями. Их значения найдем, разделив продольную силу N на площадь А: σ=N/A

Продольная сила N с помощью метода сечений всегда может быть выражена через внешние силы. В формулe следует подставлять алгебраическое значение N т.е со знаком плюс в случае растяжения и со знаком минус в случае сжатия

§3. Расчеты на прочность и жесткость при растяжении-сжатии

Прочность стержня при осевом растяжении и сжатии обеспечена, если для каждого его поперечного сечения наибольшее расчетное (рабочее) напряжение σ не превосходит допускаемого [σ] : σ=N/A≤ [σ],

где N — абсолютное продольной силы в сечении;

А — площадь поперечного сечения;

[σ] — допускаемое напряжение пр растяжении или сжатии для материала стержня.

Данное выражение определяет условие прочности при растяжении или сжатии.

С помощью этой формулы решается три вида зада (выполняется три вида расчета):

1. Проверка прочности (проверочный расчет). При заданных продольной силы N и площади поперечного сечения А определяют рабочее (расчетное) напряжение и сравнивают его с допускаемым [σ].

Превышение рабочего (расчетного) напряжения не должно быть больше 5% , иначе прочность рассчитываемой детали считается недостаточной.

В случаях, когда рабочее напряжения значительно ниже допускаемых σ

Видео:Основы Сопромата. Теория 1. Растяжение - сжатие стержняСкачать

Основы Сопромата. Теория 1. Растяжение - сжатие стержня

Расчет стержней на растяжение — сжатие

Задача (выбор варианта задачи ↓ )

— построить эпюры внутренних продольных сил N и нормальных напряжений для стержня;
— рассчитать перемещения характерных сечений стержня и построить их эпюру;
— рассчитать деформации участков и общее изменение длины стержня.

Условие прочности при растяжении. Типы задач:

1. Проверка на прочность: a) через допускаемые напряжения;
b) если задан допускаемый коэффициент запаса прочности.

2. Подбор размеров сечения (проектировочный расчет)

3. Определение грузоподъемности стержня (определение допускаемой нагрузки)

Исходные данные

Площадь сеченияДлина ступени
1A1 = см 2 = 0.0001 м 2L1 = м
2A2 = см 2 = 0.0002 м 2L2 = м
3A3 = см 2 = 0.0003 м 2L3 = м
4A4 = см 2 = 0.0004 м 2L4 = м
5A5 = см 2 = 0.0005 м 2L5 = м
6A6 = см 2 = 0.0006 м 2L6 = м
7A7 = см 2 = 0.0007 м 2L7 = м
8A8 = см 2 = 0.0008 м 2L8 = м
9A9 = см 2 = 0.0009 м 2L9 = м
10A10 = см 2 = 0.0010 м 2L10 = м

Основные обозначения, принятые в сопромате

Основные обозначения, принятые в сопромате

Для обозначения понятий в сопромате существует сложившаяся в мировой системе практика обозначений на основе Стандарта ИСО № 3898 (Международная организация по стандартизации, ИСО (International Organization for Standardization,ISO), занимающаяся выпуском стандартов), в которой предусмотрено применение латинских и греческих букв, специальных обозначений и т.д.

А – площадь поперечного сечения, (м 2 ); a – размер стороны прямоугольника, (м); b – ширина сечения, (м); D – диаметр наружный сечения, (м); d – диаметр внутренний сечения, (м); E – модуль упругости I рода, модуль Юнга, (Па); F – внешняя сила (H); G – модуль сдвига, (Па); g – ускорение свободного падения (м/с 2 ); h – высота сечения, (м); i – индекс у сил и усилий; l – длина стержня или силового участка, (м); M – сосредоточенный момент, Нм; N – нормальная или продольная сила (внутренняя), (H); n – коэффициент запаса прочности; [n] – допускаемый коэффициент запаса прочности; Q (QX, QY) – поперечная сила (внутренняя), (H); q – погонная нагрузка, (Н/м); R – равнодействующая сил, (Н); x – горизонтальная ось сечения; y – вертикальная ось сечения; х0, у0 – центральные оси сечения; [σ] или σadm – допускаемое напряжение, (Па); σк – критическое напряжение, Па; – ; – ; τ(τxyyzzx) – касательное напряжение (тау), (Па); Δl – абсолютная линейная деформация (удлинение или укорочение), (м); ε – относительная линейная деформация (эпсилон), безразмерная; σ (σxyz) – нормальное напряжение (сигма)(Па); δ – перемещение (дельта) (линейное, м; угловое, рад); λ – гибкость стержня (лямбда), безразмерная; ν – коэффициент Пуассона (ню), безразмерная;

Изменения обозначений, принятых в сопромате, в соответствии с рекомендациями ИСО.

🔍 Видео

Сопромат. Часть 1. Растяжение (сжатие). Построение эпюр продольных сил и нормальных напряжений.Скачать

Сопромат. Часть 1. Растяжение (сжатие). Построение эпюр продольных сил и нормальных напряжений.

Основы Сопромата. Задача 1. Растяжение-сжатие стержняСкачать

Основы Сопромата. Задача 1. Растяжение-сжатие стержня

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Растяжение, сжатиеСкачать

Растяжение, сжатие

✓ Площадь сечения | ЕГЭ-2018. Задание 13. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Площадь сечения | ЕГЭ-2018. Задание 13. Математика. Профильный уровень | Борис Трушин

29. Жесткий брус. Растяжение-сжатие ( практический курс по сопромату )Скачать

29. Жесткий брус. Растяжение-сжатие ( практический курс по сопромату )

Осевое растяжение (сжатие).Решаем ступенчатый брус.Скачать

Осевое растяжение (сжатие).Решаем ступенчатый брус.

Растяжение-сжатие. Эпюра перемещений. Деформация. Сопромат.Скачать

Растяжение-сжатие. Эпюра перемещений. Деформация. Сопромат.

9. Растяжение сжатие ( практический курс по сопромату )Скачать

9. Растяжение сжатие ( практический курс по сопромату )

21. Внецентрненное растяжение-сжатие стойки ( практический курс по сопромату )Скачать

21. Внецентрненное растяжение-сжатие стойки ( практический курс по сопромату )

10. Подбор сечения при растяжении сжатии ( практический курс по сопромату )Скачать

10. Подбор сечения при растяжении сжатии ( практический курс по сопромату )

Тех.Мех. - это просто. 2 Растяжение и сжатиеСкачать

Тех.Мех. - это просто. 2 Растяжение и сжатие

Сможешь найти площадь трапеции? Как найти площадь трапеции если все стороны известны?Скачать

Сможешь найти площадь трапеции? Как найти площадь трапеции если все стороны известны?

Площади фигур. Сохраняй и запоминай!#shortsСкачать

Площади фигур. Сохраняй и запоминай!#shorts

Сопротивление материалов. Лекция: одноосное растяжение и сжатие стержнейСкачать

Сопротивление материалов. Лекция: одноосное растяжение и сжатие стержней

Лучший способ найти площадь кругаСкачать

Лучший способ найти площадь круга

Сопротивление материалов. Лекция: расчёт на прочность при растяжении и сжатииСкачать

Сопротивление материалов. Лекция: расчёт на прочность при растяжении и сжатии
Поделиться или сохранить к себе: