формула расчета площади спирали

Содержание
  1. Спираль Архимеда
  2. Построение спирали Архимеда
  3. Шаг спирали Архимеда
  4. Полярное уравнение спирали Архимеда
  5. Спираль архимеда построение формула
  6. Построение спирали Архимеда
  7. Шаг спирали Архимеда
  8. Полярное уравнение спирали Архимеда
  9. Что такое спираль Архимеда?
  10. Задание параметризированной геометрии спирали Архимеда
  11. Краткие выводы по моделированию спирали Архимеда в COMSOL Multiphysics
  12. Расчет параметров нагревателей из нихрома и фехрали
  13. Сырьё для нагревателей
  14. Расчет длины спирали
  15. Расчет веса и длины
  16. Методы вычислений и применяемые формулы
  17. Определение длины проволоки
  18. Расчёт по сопротивлению
  19. Расчёт температурного значения
  20. Трёхфазная сеть
  21. «Звезда»
  22. «Треугольник»
  23. Четыре аспекта при подборе нагревателей
  24. Нихром & фехраль: чем обусловлен выбор
  25. Применение, форма на продажу, цена
  26. Что делать для точного подбора и профессионального изготовления

Видео:Спираль Архимеда построениеСкачать

Спираль Архимеда построение

Спираль Архимеда

Первый ученый который открыл и изучил свойства этой линии, был великий математик и философ из древней Греции, Архимед. Его именем она и была названа.

формула расчета площади спирали

Видео:Находим длину спиралиСкачать

Находим длину спирали

Построение спирали Архимеда

Некоторая прямая UV изначально совпадает с прямой XX`. Прямая UV равномерно вращается относительно точки O. По прямой UV равномерно перемещается точка M отдаляясь от точки O. В результате точка M, перемещаясь по вышеуказанным правилам, описывает линию — спираль Архимеда.

Видео:Площадь 11 1Скачать

Площадь 11 1

Шаг спирали Архимеда

При повороте прямой UV из любого положения на некоторый угол Δφ точка M смещается на расстояние Δρ. Смещение MM1 происходит за один оборот прямой UV, и всегда равно одному и тому же числу. Это число называется шагом спирали Архимеда

Видео:§6 Спираль АрхимедаСкачать

§6 Спираль Архимеда

Полярное уравнение спирали Архимеда

В этом уравнении можно перейти от шага спирали Архимеда a к параметру спирали Архимеда k

Тогда уравнение спирали примет вид

При повороте прямой UV на один радиан, точка M смещается на расстояние равное Параметру спирали Архимеда.

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Спираль архимеда построение формула

Первый ученый который открыл и изучил свойства этой линии, был великий математик и философ из древней Греции, Архимед. Его именем она и была названа.

формула расчета площади спирали

Видео:Почему площадь сферы в четыре раза больше её тени? [3Blue1Brown]Скачать

Почему площадь сферы в четыре раза больше её тени? [3Blue1Brown]

Построение спирали Архимеда

Некоторая прямая UV изначально совпадает с прямой XX`. Прямая UV равномерно вращается относительно точки O. По прямой UV равномерно перемещается точка M отдаляясь от точки O. В результате точка M, перемещаясь по вышеуказанным правилам, описывает линию — спираль Архимеда.

Видео:Длина параболы и спирали Архимеда: что у них общего?Скачать

Длина параболы и спирали Архимеда: что у них общего?

Шаг спирали Архимеда

При повороте прямой UV из любого положения на некоторый угол Δφ точка M смещается на расстояние Δρ. Смещение MM1 происходит за один оборот прямой UV, и всегда равно одному и тому же числу. Это число называется шагом спирали Архимеда

Видео:Простой расчет длины, диаметра нихрома для самодельного электрического нагревателя, формулы, таблицыСкачать

Простой расчет длины, диаметра нихрома для самодельного электрического нагревателя, формулы, таблицы

Полярное уравнение спирали Архимеда

В этом уравнении можно перейти от шага спирали Архимеда a к параметру спирали Архимеда k

Тогда уравнение спирали примет вид

При повороте прямой UV на один радиан, точка M смещается на расстояние равное Параметру спирали Архимеда.

Архимедова спираль – плоская кривая сформированная траекторией произвольной точки, которая размеренно двигается по лучу берущему свое начало в O, одновременно с этим сам луч размерено обращается вокруг O. Перефразировав получаем, расстояние ρ пропорционально углу оборота φ луча. Обороту луча на одинаковый угол соответствует одно и то же увеличение ρ.

формула расчета площади спирали

Уравнение, характеризующее Архимедову спираль, в полярной системе координат:

где k – сдвиг точки M по лучу r, при обороте на угол, который равен одному радиану.

Обороту прямой на 2π соответствует смещение a = 2kπ.

Число aшаг спирали.

На основании этого уравнение Архимедовой спирали можно представить таким образом:

Когда поворачиваем луч против движения часовой стрелки, получаем правую спираль, когда поворачиваем – по часовой стрелке – левую спираль. При положительной величине φ формируется правая спираль, отрицательной – левая спираль.

формула расчета площади спирали

Спирали Архимеда широко используются при построении геометрий для катушек индуктивности, спиральных теплообменников и микрогидродинамических устройств. В этой заметке мы покажем, как построить спираль Архимеда, используя аналитические выражения и их производные для задания необходимых кривых. Сначала мы создадим двухмерную геометрию, а затем, задав нужную толщину, преобразуем её в трёхмерную с помощью операции Extrude (Вытягивание).

Что такое спираль Архимеда?

Широко распространённые в природе спирали или завитки используются во многих инженерных конструкциях. Например, в электротехнике и электронике с помощью проводников спиралевидной формы наматывают катушки индуктивности или проектируют геликоидные антенны. В машиностроении спирали используются при проектировании пружин, косозубых цилиндрических передач или даже механизмов часов, один из которых изображён ниже.

формула расчета площади спирали
Пример спирали Архимеда, которая используется в часовом механизме. Изображение представлено Greubel Forsey. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons.

В данной статье мы разберём только один вид спирали, а именно, спираль Архимеда, которая изображена в механизме выше. Спираль Архимеда – это особый вид спирали с постоянным расстоянием между витками. Благодаря этому свойству она широко распространена при проектировании катушек и пружин.

Уравнение спирали Архимеда в полярной системе координат записывается, как:

где a и b — параметры, определяющие начальный радиус спирали и расстояние между витками, которое равно 2 pi b . Обратите внимание, что спираль Архимеда также иногда называют арифметической спиралью. Это имя связывают с арифметической зависимостью расстояния от начала кривой до точек спирали, находящихся на одной радиальной линии.

Задание параметризированной геометрии спирали Архимеда

Теперь, когда вы уже знаете, что такое спираль Архимеда, давайте приступим к параметризации и созданию геометрии в COMSOL Multiphysics.

формула расчета площади спирали
Спираль Архимеда может быть задана как в полярных, так и в декартовых координатах.

Для начала необходимо преобразовать уравнение спирали из полярной системы координат в декартову и выразить каждое уравнение в параметрической форме:

После преобразования уравнения спирали в параметрической форме в декартовой системе координат примут вид:

В COMSOL Multiphysics необходимо определить набор параметров, с помощью которых будем задавать геометрию спирали. В нашем случае — это начальный и конечный радиусы спирали a_ и a_ , соответственно, и количество витков n . Показатель роста спирали b находится, как:

Также необходимо определить начальный и конечный углы спирали — theta_0 и theta_f , соответственно. Давайте с них и начнём — theta_0=0 и theta_f=2 pi n . Исходя из заданной информации, определяем параметры для построения геометрии спирали.

формула расчета площади спирали
Параметры, которые используются для построения геометрии спирали.

Начнём наше построение, выбрав трёхмерную задачу (3D Component) и создадим Work Plane (Рабочую плоскость) в разделе Geometry (Геометрия). В геометрии для Work Plane добавляем Parametric Curve (Параметрическую кривую) и записываем параметрические уравнения, описанные выше, чтобы задать двухмерную геометрию спирали Архимеда. Данные уравнения можно сразу вписать в соответствующие поля во вкладке Expression либо сначала можно задать каждое уравнение отдельной Аналитической функцией (Analytic function):

формула расчета площади спирали
Выражение для X-компоненты уравнения спирали Архимеда, заданное аналитической функцией.

Аналитическая функция затем может использоваться в качестве выражения в узле Parametric Curve. Во вкладке Parameter задаём параметр s от начального угла, theta_0 , до его конечного значения, theta_f=2 pi n .

формула расчета площади спирали
Настройки для Parametric Curve (Параметрической кривой).

Как только вы зададите все параметры и нажмёте на кнопку «Build Selected», будет построена кривая, изображённая на скриншоте выше. Теперь давайте зададим толщину спирали, чтобы получить твёрдотельную (solid) двухмерную фигуру.

До этого момента параметрами нашей кривой были начальный ( a_ ) и конечный ( a_ ) радиусы и количество витков n . Теперь мы хотим добавить ещё один – толщину спирали.

Ещё раз напомним главное свойство спирали — расстояние между витками постоянно и равно 2 pi b . Что эквивалентно frac -a_ > . Чтобы добавить толщину в наши уравнения, представляем расстояние между витками суммой толщины спирали и зазора thick+gap .

формула расчета площади спирали
Расстояние между витками определяется толщиной спирали и величиной зазора.

Чтобы ввести параметр толщины и сохранить постоянное расстояние между витками, последнее перепишем, как:

После этого выражаем показатель роста спирали через толщину:

Также нужно выразить конечный угол спирали через начальный угол и конечный радиус:

Хотите задать отличный от нуля начальный угол спирали? Если так, то его надо будет добавить в выражение для определения конечного угла: theta_f=frac -a_ >+theta_0 .

Дублирование кривой спирали дважды со смещением на -frac и +frac

по отношению к начальной кривой позволяет построить спираль заданной толщины. Чтобы правильно расположить внутреннюю и внешнюю спирали, необходимо убедиться, что начала данных кривых перпендикулярны линии, на которой расположены их начальные точки. Это можно сделать, домножив расстояние смещения pmfrac

на единичный вектор, расположенный по нормали к начальной кривой спирали. Уравнения векторов нормали в параметрическом виде:

где s — это параметр, используемый в узле Parametric Curve. Чтобы получить нормированные единичные вектора, необходимо эти выражения разделить на длину нормали:

Обновленные параметрические уравнения спирали Архимеда со смещением:

Записывать такие длинные выражения довольно неудобно, поэтому введём следующие обозначения:

где N_x и N_y определяются аналитическими функциями в COMSOL Multiphysics, аналогично X_ и Y_ в первом примере. Внутри функции используется оператор производной, d(f(x),x) , как показано на скриншоте ниже.

формула расчета площади спирали
Примеры оператора производной, который используется в аналитической функции

Функции X_ , Y_ , N_x , и N_y могут быть использованы в выражениях для задания параметрической кривой, как с одной стороны:

формула расчета площади спирали
Выражения для второй смещённой параметрической кривой.

Чтобы соединить концы, добавим ещё две параметрические кривые, используя незначительные изменения уравнений выше. Для кривой, которая будет соединять спираль в центре, необходимо задать X_ , Y_ , N_x , и N_y для начального значения угла, theta. Для кривой, которая будет соединять концы, необходимо задать конечное значение theta. Исходя из этого, уравнения кривой в центре:

Уравнения кривой на конце:

В этих уравнениях параметр s изменяется от -1 до 1, как показано на скриншоте ниже.

формула расчета площади спирали
Уравнения кривой, соединяющей спираль в центре.

В итоге, мы имеем пять кривых, которые определяют осевую линию спирали и её четыре стороны. Осевую линию можно отключить (функция disable) или даже удалить, так как она не является необходимой. Добавив узел Convert to Solid, создаём единый геометрический объект. Последним шагом является вытягивание данного профиля с помощью операции Extrude и создание трёхмерного объекта.

формула расчета площади спирали
Полная геометрическая последовательность и вытянутая (экструдированная) трёхмерная геометрия спирали.

Краткие выводы по моделированию спирали Архимеда в COMSOL Multiphysics

В данной заметке мы разобрали основные шаги по созданию параметрической спирали Архимеда. С помощью данной модели вы можете сами экспериментировать с различными значениями параметров, а также попробовать решить с использованием данной параметризации оптимизационную задачу. Надеемся, что данная статья оказалась полезной и вы будете применять данную технику в своих последующих моделях.

Видео:Как узнать длину и толщину нихромовой проволоки для намотки нагревательного элемента своими рукамиСкачать

Как узнать длину и толщину нихромовой проволоки для намотки нагревательного элемента своими руками

Расчет параметров нагревателей из нихрома и фехрали

Производственные процессы (такие, как сушка, обжиг) происходят при высоких температурах, составляющих сотни градусов по Цельсию. Нагреватели для технологического оборудования выбираются термостойкие, способные выдерживать многократные процессы изменения температуры, а также поддерживать на регулярной основе высокие термические показатели. В противном случае агрегаты придётся часто останавливать, чтобы заменить вышедшие из строя элементы новыми, что невыгодно по энергетическим и финансовым показателям.

Видео:Площадь прямоугольника. Как найти площадь прямоугольника?Скачать

Площадь прямоугольника. Как найти площадь прямоугольника?

Сырьё для нагревателей

Изначально устанавливают нагреватели из стойких материалов, к которым относятся сплавы.

формула расчета площади спирали

Токопроводящими элементами ТЭНов выбирают нихром и фехраль. Это ─ сплавы, состоящие из 2-3 компонентов. В первом случае объединили Ni и Cr, а во втором ─ Fe, Al и Cr. Для каждого типа оборудования учитывается диаметр проволоки, напряжение в сети, вырабатываемая мощность, сопротивление на единицу площади.

Как выбрать нужную проволоку? Различают Фехраль стандартный, Суперфехраль, Еврофехраль. Что лучше взять: дорогостоящий нихром или более хрупкий фехраль? Как правильно подобрать параметры резистивного материала для воздушной и жидкостной сред?

Очень удобно, когда есть специальный математический инструмент, в который вводишь необходимые составляющие – и он выдаёт готовый ответ по подбору материала для проволоки, её длины, диаметра, формы (прямая или спиральная). Такой калькулятор уже разработан и представлен ниже.

Видео:Почему простые числа образуют спирали? [3Blue1Brown]Скачать

Почему простые числа образуют спирали? [3Blue1Brown]

Расчет длины спирали

Мощность нагревателя
Вт

Напряжение питания
В

В калькуляторе не учтено возрастание сопротивления при повышении температуры. Фактическая мощность будет ниже расчетной.

Видео:Физика 8 класс (Урок№19 - Расчёт сопротивления проводника.)Скачать

Физика 8 класс (Урок№19 - Расчёт сопротивления проводника.)

Расчет веса и длины

Также существуют несколько видов расчётов, которые рассмотрим более подробно.

Видео:Аналитический способ определения площадей. Формула землемера, геодезиста, Гаусса.Алгоритм шнурованияСкачать

Аналитический способ определения площадей. Формула землемера, геодезиста, Гаусса.Алгоритм шнурования

Методы вычислений и применяемые формулы

Исходными показателями для последующего расчёта характеристик термоэлементов выбираются:

объём нагреваемого пространства в агрегате;

граничная температура, используемая для выполнения термического процесса;

мощность, продуцируемая нагревателем.

Определение длины проволоки

Видео:Закон БернуллиСкачать

Закон Бернулли

Расчёт по сопротивлению

1. Находим силу тока:

2. Вычисляем значение сопротивления:

3. Узнаём, какой длины нужна проволока (L):

где ρ – удельное сопротивление материала.

4. Затем нужно просчитать число витков и размер одного витка.

где Ø н – это диаметр намотки, а 1/2Øпоп. с. – половинное значение поперечного сечения в проволоке.

5. По таблице проверяем, сможет ли проволока с рассчитанными параметрами выдержать электрическую нагрузку.

формула расчета площади спирали

формула расчета площади спирали

При подборе и I, и t˚ выбираются значения приближённые, но округляемые в сторону бόльших значений. При этом получаем минимально допустимые площадь сечения и диаметр нагревателя. При желании допускается использовать проволоку толще, чем получено при расчёте. А вот в меньшую сторону от полученных значений уходить не рекомендуется: возникает потенциальная опасность быстрого перегорания проволоки.

Ещё один полезный нюанс. При размещении резистивного проводника из нихрома в жидкой среде, значение силы тока повышают на 10-50%. Когда нагреватель закрыт, то для толстой проволоки ток снижают на 20%, для тонкой – на половину.

Видео:Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Расчёт температурного значения

Первый способ имеет погрешности, так как значение сопротивления спирали выбирается в холодном состоянии. А при нагреве оно способно менять исходную величину. Там, где используются приборы небольшой мощности, и температура повышается незначительно, можно принимать первый метод, как подходящий. А когда в печах требуется высокая температура, проведенные вышеуказанным методом вычисления нельзя назвать точными. Поэтому стали применять второй метод, более сложный и скрупулёзный.

1. Имея линейные размеры камеры печи, определяем её объём:

Где l, b, h — это соответственно длина, ширина и глубина устройства.

2. Просчитываем мощность термического агрегата. При объёме обжигового устройства до 50 л удельная мощность считается равной 100 Вт/л. Для печей с параметром в 100-500 л аналогичный показатель принимается 50-70 Вт/л.

где Pуд. является удельной мощностью.

2. По полученному числу смотрим, какой должен быть нагреватель. Мощность до 10 кВт допускается для однофазной сети, а когда цифра получается больше, требуется 3-хфазное подключение.

3. Находим силу тока, используя мощность проволоки и напряжение между краями нагревателя:

4. Считаем значение сопротивления:

С однофазной сетью всё понятно, здесь ток протекает по единой схеме и не разделяется на потоки.

Видео:Площадь круга. Математика 6 класс.Скачать

Площадь круга. Математика 6 класс.

Трёхфазная сеть

На производстве всегда задействовано множество потребителей тока, поэтому напряжение в сети достигает 380 В. Все три фазы получают равномерную нагрузку, в связи с чем мощность нагревателей будет равной (полученное значение делится на 3).

Разработано 2 способа организации 3-хфазной сети.

формула расчета площади спирали

«Звезда»

Характеризуется одной точкой соединения. Нагреватель находится между «нулём» и фазой, поэтому напряжение на его концах получится по 220 В.

формула расчета площади спирали

«Треугольник»

Место нагревателя – между двумя фазами, поэтому напряжение на концах будет достигать 380 В.

При сравнении двух схем с реальными цифровыми значениями, в «Треугольнике» ток, проходящий через нагреватель, будет меньше, а сопротивление окажется меньше в «Звезде».

5. Таблицы помогут отыскать значение удельной поверхности.

6. Длина проволоки ищется так:

где ρ обозначает номинальную величину сопротивления проволоки длиной 1м.

7. Чтобы найти вес проволочной части нагревателя, действуем так:

где μ представляет собой вес однометровой проволоки.

8. Зная, какого размера нам нужна проволока, вычитываем площадь поверхности с учётом её длины:

где d обозначает диаметр материала

9. Оперируя значениями мощности и площади поверхности, просчитываем её удельное значение:

где за β принимается поверхностная мощность нагревателя.

Каждый материал имеет свою конкретную β, которая подаётся в графической или табличной системе. На неё влияет допустимая рабочая температура, которая не может быть больше заданной.

Для агрегатов с высокой степенью нагрева выбирается поверхностная мощность, рассчитанная по следующей формуле:

где α – параметр эффективности излучения;

βэф. – мощность нагревателей на их поверхности, которая зависит от температуры получающей энергию среды.

α и β берутся из таблиц.

формула расчета площади спирали

формула расчета площади спирали

формула расчета площади спирали

Сушильное оборудование с термонагревом до +300˚С имеет постоянное числовое значение поверхностной мощности: (4-6) ч 10 4 Вт/м 2 .

10. Находим диаметр токоподающей части нагревателя:

формула расчета площади спирали

где ρt – величина удельного сопротивления при той температуре, которая задана для правильного ведения технологического процесса.

где ρ20 – это значение сопротивления, приходящегося на единицу длины, при +20˚С;

k – поправочный коэффициент, показывающий зависимости сопротивления от термического показателя.

формула расчета площади спирали

11. Длина проволоки вычисляется по данной формуле:

формула расчета площади спирали

Как предупредить перегрев? Надо растянуть спиралеподобную проволоку таким образом, чтобы шаг между витками на 150-200% превосходил диаметр резистивного материала.

Видео:💥Надежное соединение нихромовой проволокиСкачать

💥Надежное соединение нихромовой проволоки

Четыре аспекта при подборе нагревателей

Выбирая нагреватели, ориентируйтесь на их эксплуатационные характеристики.

Чтобы нагрев был действительно высоким, следует выбирать материалы с большим удельным сопротивлением. В противном случае понадобится увеличить длину нагревателя и сделать меньше значение поперечного сечения проволоки. Когда нагреватель используется для печей, сушильных шкафов, то не всегда разумно менять его линейные параметры (он может попросту не поместиться в располагаемой зоне).

Стойкость к термическим разрушениям, формирования окалины на поверхности, сохранение прочности при температурных изменениях, стабильность физических свойств с течением времени являются важными показателями при выборе формирующих температуру элементов.

Учитывается значение термического коэффициента сопротивления. Когда оно большое, приходится монтировать понижающие напряжение трансформаторы, которые способствуют постепенному разогреванию оборудования.

Чтобы проволока, лента, спираль получились нужно конфигурации и размера, исходные материалы выбираются с оптимальной пластичностью и способностью к свариванию.

формула расчета площади спирали

Видео:Лекальные кривые. Спираль Архимеда. Эвольвента окружности. ЦиклоидаСкачать

Лекальные кривые. Спираль Архимеда. Эвольвента окружности. Циклоида

Нихром & фехраль: чем обусловлен выбор

Какие проволоки более востребованы: на основе никеля или железа? У Fe значение сопротивления на единицу площади больше, чем у Ni, поэтому использование материала для изготовления нагревателя будет более экономным. Ещё один приятный момент в сравнении удельного веса – железо выигрывает в этом соревновании в среднем на 5%. Поэтому финансовая экономия налицо.

Везде, где будет «плюс», надо учитывать и «минус». Железистые продукты быстрее ломаются в отличие от никелевых. Навивка проволоки в спираль в фехралях происходит только в разогретом состоянии (до +300˚С), а уже при +600˚С начинается рекристаллизация то негативно влияет на длительность применения нагревателей. Воздушное окисление у Fe-содержащих материалов происходит сильнее и быстрее, чем у никелевых аналогов.

Поэтому, когда термические процессы ограничены +1200˚С (реже +1400˚С), можно выбирать железистую проволоку, особенно когда её эксплуатация предусмотрена в среде, содержащей серы или глинозёмную керамику. Однако обновлять фехралевые нагреватели понадобится чаще.

Никелесодержащая проволока не зря стόит дороже. Она более приемлема для разных термических условий эксплуатации, меньше загрязняется продуктами горения на поверхности. Каждый выбирает для себя сам, что ему лучше: сниженная цена на покупку нагревателя или более длительный период его работы.

Видео:Что такое золотое сечение? Как использовать золотую спираль в дизайне логотипа? Числа ФибоначчиСкачать

Что такое золотое сечение? Как использовать золотую спираль в дизайне логотипа? Числа Фибоначчи

Применение, форма на продажу, цена

Нихром востребован в печах по сушке и обжигу, в электроплитах, в испарителях продукции для вейперов, системах подогрева воздуха и воды, в электрических кухонных плитах. Из него изготавливают соединители, реостаты и другую продукцию, эксплуатируемую в условиях повышенной сложности.

Выпускают фехралевую и нихромовую проволоку в виде бухтовой проволоки и холоднотянутой нити. Диаметр 0,01-1см. Номенклатурный ряд пополняется прутка из горячекатаного материала, лента холодной прокатки и с плющением, круглыми полуфабрикатами.

При комнатной температуре пластичность фехраля на 5-10% ниже, чем у нихрома. Также лидирует нихром и при временном сопротивлении усилию на разрыв.

Фехраль твёрже, поэтому ему сложнее придать нужную форму (нужен нагрев при навивке в спираль).

Повышение температуры выше +1200˚С негативно влияет настабильность состояния железистой проволоки. Нихром не меняет своего кристаллического состояния при термическом значении до +1200˚С, а связи с чем дольше пригоден в производственных процессах.

Ценовой формат следующий: никель в 10 раз дороже железа, а разница в покупке сплавов составляет более 300%. Однако, приобретая нагреватели, надо принимать во внимание не только финансовый показатель, но и условия применения, долговечность использования. В ряде случаев быстрый износ, остановка печей выливаются в значительные издержки, поэтому правильнее будет остановиться не на фехралевой, а нихромовой термической продукции.

Также можно изучить свойства других сплавов, в которые добавлен алюминий. Он повышает стойкость к окалине и обеспечивает повышенную устойчивость в процессе поддержания условий обжига (сушки, спекания) и при смене температурных фаз.

Видео:Сперматозоид-чемпион | наглядно показано оплодотворениеСкачать

Сперматозоид-чемпион | наглядно показано оплодотворение

Что делать для точного подбора и профессионального изготовления

Теперь вы имеете точное представление о том, что собой представляют фехралевые и нихромовые токопроводящие нагреватели. Их количество можно долго и скрупулёзно рассчитывать по формулам. А более быстро получится выполнить подбор, если использовать размещённый на сайте калькулятор. А если углубиться в расчёты, учитывать сопутствующие факторы эксплуатации, то и калькулятора, и приведенных формул окажется мало.

В этом случае мы приглашаем напрямую обращаться к нашим специалистам, которые, имея многолетний опыт, наиболее точно поработают с параметрами проектируемых нагревателей. После получения всех расчётных составляющих мы в индивидуальном порядке изготовим нагреватели, которые проявят свои эксплуатационные качества в полной мере.

Поделиться или сохранить к себе: