формула напряженности через площадь

Видео:Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.

Напряженность электрического поля

формула напряженности через площадь

О чем эта статья:

8 класс, 10 класс

Видео:Урок 218. Напряженность электрического поляСкачать

Урок 218. Напряженность электрического поля

Что такое электрическое поле

Долгое время ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает вокруг заряженных тел и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Тела, имеющие одноименные заряды, будут отталкиваться, а разноименные — притягиваться.

формула напряженности через площадь

Видео:НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полейСкачать

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полей

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые заряженные объекты.

Видео:Урок 224. Напряженность поля неточечных зарядовСкачать

Урок 224. Напряженность поля неточечных зарядов

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые взаимодействуют. Вокруг каждого существует свое электрическое поле. Тогда существует некая точка или область, в которой одновременно существует электрическое поле нескольких зарядов. Чему равна общая напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав векторно напряженности, создаваемые каждым зарядом в отдельности в той же точке. Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

расстояние между зарядами очень мало — порядка 10 -15 м;

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Видео:Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряда, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на них действуют силы, направленные вдоль соединяющей их прямой.

формула напряженности через площадь

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: формула напряженности через площадьгде q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

формула напряженности через площадь

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

формула напряженности через площадь

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Видео:Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

формула напряженности через площадь

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Видео:Электрическое поле/Напряженность и потенциал поля/Разность потенциалов/Работа поляСкачать

Электрическое поле/Напряженность и потенциал поля/Разность потенциалов/Работа поля

Напряженность поля точечного заряда

Обозначим: q — заряд, создающий поле,

q0 — заряд, помещенный в поле (внешний заряд).

Закон Кулона: формула напряженности через площадь. Напряженность поля: формула напряженности через площадь.

Тогда напряженность поля точечного заряда: формула напряженности через площадь

формула напряженности через площадь

Теорема Гаусса.

Потоком вектора напряженности наз. величина Ф, равная произведению модуля вектора напряженности на площадь контура S, ограничивающую некоторую площадь, и на косинус угла между вектором напряженности и нормалью (перпендикуляром) к площадке.

формула напряженности через площадь

Если считать, что напряженность пропорциональна числу силовых линий, приходящихся на единицу площади поверхности (т.е. густоте), то поток напряженности пропорционален полному числу силовых линий, пересекающих данный контур.

формула напряженности через площадь

Поток линий напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален величине заряда, находящегося в области пространства, ограниченного данной поверхностью.

формула напряженности через площадь

Применения теоремы Гаусса.

1. Напряженность поля заряженной проводящей сферы радиуса R. Сфера заряжена по поверхности.

А) Внутри сферы заряда нет . Е=0

формула напряженности через площадь

Б) Снаружи сферы. формула напряженности через площадь

формула напряженности через площадь

На поверхности сферы: формула напряженности через площадь

2. Напряженность поля шара заряженного по объему.

Введем понятие объемной плотности заряда: формула напряженности через площадь

Объемная плотность заряда показывает, какой заряд содержится в единице объема заряженного по всему объему тела. формула напряженности через площадь

Объем шара произвольного радиуса формула напряженности через площадь.

Обозначим q — заряд шара, q0 — заряд, находящийся внутри объема произвольного радиуса.

формула напряженности через площадь

Тогда заряд сферы радиуса r , будет: формула напряженности через площадь

Следовательно: формула напряженности через площадь.

– напряженность поля внутри шара, равномерно заряженного по объему. Снаружи — см. 1.

формула напряженности через площадь

3. Напряженность поля бесконечной заряженной плоскости.

Введем понятие поверхностной плотности заряда: формула напряженности через площадь.

Тогда формула напряженности через площадь.

Коэффициент 2 появляется, т.к. плоскость окружена двумя поверхностями площадью S. Поле бесконечной заряженной плоскости не зависит от расстояния от плоскости! Можно пользоваться, когда расстояние много меньше размеров плоскости.

4. Напряженность поля плоского воздушного конденсатора.

Из рисунка видим, что снаружи конденсатора поля пластин взаимно скомпенсированы, и общее поле равно нулю. Внутри конденсатора поля складываются.

Используя вывод п.3 получаем: формула напряженности через площадь.

Формула справедлива при условии, что расстояние между пластинами много меньше размеров самих пластин и вдали от краев пластин.

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Напряженность электрического поля.

Напряженность электрического поля — векторная характеристика поля, сила, действующая на единичный покоящийся в данной системе отсчета электрический заряд. Напряженность определяется по формуле:

формула напряженности через площадь

где формула напряженности через площадь— напряженность поля; формула напряженности через площадь— сила, действующая на помещенный в данную точку поля за­ряд q. Направление вектора формула напряженности через площадьсовпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд. Единицей напряженности в СИ является вольт на метр (В/м).

Видео:Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.Скачать

Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.

Напряженность поля точечного заряда.

Согласно закону Кулона, точечный заряд q0 действует на другой заряд с силой, равной

Модуль напряженности поля точечного заряда q0 на расстоянии r от него равен:

формула напряженности через площадь,

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд:

🎦 Видео

Напряженность электрического поля - bezbotvyСкачать

Напряженность электрического поля - bezbotvy

Бесконечная заряженная плоскость [Физзадачи #1]Скачать

Бесконечная заряженная плоскость [Физзадачи #1]

42. Теорема Гаусса. Расчет электростатических полейСкачать

42. Теорема Гаусса. Расчет электростатических полей

Урок 223. Теорема ГауссаСкачать

Урок 223. Теорема Гаусса

Электростатика | закон Гаусса для электрического поля | 1Скачать

Электростатика | закон Гаусса для электрического поля | 1

Напряженность в конденсаторе [Физзадачи #8]Скачать

Напряженность в конденсаторе [Физзадачи #8]

Математика это не ИсламСкачать

Математика это не Ислам

физика 10-11 база. лекция 15. Электростатика. Принцип суперпозиции. Линии напряженности.Скачать

физика 10-11 база. лекция 15. Электростатика. Принцип суперпозиции. Линии напряженности.

Электрическое поле. Напряженность электрического поля. 8 класс.Скачать

Электрическое поле. Напряженность электрического поля. 8 класс.

B15 Физика ЕГЭ По какой из стрелок 1–4 направлен вектор напряжённости электрического поляСкачать

B15 Физика ЕГЭ По какой из стрелок 1–4 направлен вектор напряжённости электрического поля

Рассмотрение темы: "Теорема Гаусса-Остроградского. Поток вектора напряжённости"Скачать

Рассмотрение темы: "Теорема Гаусса-Остроградского. Поток вектора напряжённости"
Поделиться или сохранить к себе:
Напряженность поля точечного заряда.