формула для площади криволинейной трапеции

Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Определенный интеграл. Площадь криволинейной трапеции

п.1. Теорема о площади криволинейной трапеции

формула для площади криволинейной трапеции

Теорема
Площадь криволинейной трапеции, образованной графиком функции (y=f(x)) на интервале [a;b], равна (F(b)-F(a)), где (F(x)) — первообразная функции (f(x)) на [a;b].

формула для площади криволинейной трапеции

Доказательство:
Выберем на интервале (xin [a;b]). Площадь соответствующей криволинейной трапеции (S(x)) является функцией от (x). Дадим переменной (x) приращение (triangle x).
Площадь криволинейной трапеции на интервале (left[a;x+triangle xright]) равна сумме
(S(x+triangle x)=S(x)+S(triangle x)). Откуда приращение площади: $$ triangle S=S(triangle x)=S(x+triangle x)-S(x) $$ По теореме о среднем (см. ниже в этом параграфе) между (x) и (x+triangle x) всегда найдется такое (t), что приращение площади равно произведению: $$ triangle S=f(t)cdot (x+triangle x-x)=f(t)cdot triangle x $$ Если (triangle xrightarrow 0), то (trightarrow x), и в пределе получаем: begin S'(x)=lim_frac=lim_ frac=lim_f(t)=f(x) end Т.е. (S(x)) является первообразной для (f(x)) на [a;b]. В общем виде: $$ S(x)=F(x)+C $$ Найдем C. В точке a: $$ S(a)=0=F(a)+CRightarrow C=-F(a) $$ Тогда вся площадь: $$ S=S(b)=F(b)+C=F(b)-F(a) $$ Что и требовалось доказать.

п.2. Формула Ньютона-Лейбница

Например:
Найдем площадь фигуры, ограниченной осью абсцисс и графиком функции $$ y=3-2x-x^2 $$

формула для площади криволинейной трапецииПостроим график
(см. §28 справочника для 8 класса).
Это парабола. (alt 0) – ветки вниз.
Координаты вершины: begin x_0=-frac=-frac=-1,\ y_0=3+2-1=4 end Точки пересечения с осью OX: begin 3-2x-x^2=0Rightarrow x^2+2x-3=0\ (x+3)(x-1)=0Rightarrow left[ begin x=-3,\ x=1 end right. end Точка пересечения с осью OY: $$ x=0, y=3 $$

Необходимо найти площадь заштрихованной фигуры.
Функция: (f(x)=3-2x-x^2)
Пределы интегрирования: (a=-3, b=1) begin S=int_^(3-2x-x^2)dx=left(3x-2cdotfrac-fracright)|_^=left(3x-x^2-fracright)|_^=\ =left(3-cdot 1-1^2-fracright)-left(3cdot(-3)-(-3)^2-fracright)=2-frac13+9=10frac23 end Ответ: (10frac23)

п.3. Геометрический смысл теоремы Лагранжа о среднем

Теорема Лагранжа о среднем
Если функция (F(x)) непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b), то существует такая точка (muin(a;b)), что $$ F(b)-F(a)=F'(mu)(a-b) $$ Пусть (F'(x)=f(x)), т.е. функция (F(x)) является первообразной для (f(x)). Тогда: $$ F(b)-F(a)=int_^f(x)dx=f(mu)(b-a) $$

формула для площади криволинейной трапеции

Геометрический смысл теоремы Лагранжа о среднем в интегральной форме заключается в том, что площадь криволинейной трапеции равна площади прямоугольника с основанием (d=b-a) и высотой (h=f(mu)), где (aleqmuleq b).
Теорема о среднем используется при доказательстве многих формул, связанных с использованием определенных интегралов (центра тяжести тела, площади поверхности и т.д.).

п.4. Площадь плоской фигуры, ограниченной двумя кривыми

Например:
Найдем площадь фигуры, ограниченной двумя параболами (y=x^2) и (y=4x-x^2).

Найдем точки пересечения парабол: $$ x^2=4x-x^2Rightarrow 2x^2-4x=0Rightarrow 2x(x-2)=0Rightarrow left[ begin x=0\ x=2 end right. $$ Строим графики.
формула для площади криволинейной трапеции
Необходимо найти площадь заштрихованной фигуры.
Функция сверху: (f(x)=4x-x^2)
Функция снизу: (g(x)=x^2)
Пределы интегрирования: (a=0, b=2) begin S=int_^left((4x-x^2)-x^2right)dx=int_^(4x-2x^2)dx=left(4cdotfrac-2cdotfracright)|_0^2=\ =left(2x^2-frac23 x^3right)|_0^2=2cdot 2^2-frac23cdot 2^3-0=8-frac=frac83=2frac23 end Ответ: (2frac23)

п.5. Примеры

Пример 2. Найдите площадь фигуры под кривой на заданном интервале:
a) (f(x)=x^3+3, xinleft[-1;1right])
формула для площади криволинейной трапеции$$ S=int_^(x^3+3)dx=left(frac+3xright)|_^=frac14+3-left(frac14-3right)=6 $$
б) (f(x)=sin2x, xinleft[0;fracpi 2right])
формула для площади криволинейной трапеции$$ S=int_^sin2xdx=-frac12cos2x|_^=-frac12left(cosleft(2cdotfracpi 2right)-cos0right)=-frac12(-1-1)=1 $$
в) (f(x)=frac4x+3, xinleft[2;6right])
формула для площади криволинейной трапеции
(f(x)=frac4x+3) — гипербола с асимптотами (x=0, y=3)
Площадь под кривой: begin S=int_^left(frac4x+3right)dx=(4cdot ln|x|+3x)|_^=(4ln 6+18)-(4ln 2+6)=\ =4(ln 6-ln 2)+12=4lnfrac62+12=4ln 3+12=4(ln 3+3) end
г) (f(x)=frac<sqrt>, xinleft[1;4right])
формула для площади криволинейной трапеции$$ S=int_^frac<sqrt>=frac<x^>|_^=2sqrt|_^=2(sqrt-sqrt)=2 $$

Пример 3. Найдите площадь фигуры, ограниченной линиями:
a) (y=x-2, y=x^2-4x+2)
Найдем точки пересечения прямой и параболы: $$ x-2=x^2-4x+2Rightarrow x^2-5x+4=0Rightarrow (x-1)(x-4)=0Rightarrow left[ begin x=1,\ x=4 end right. $$ формула для площади криволинейной трапеции
Функция сверху: (f(x)=x-2)
Функция снизу: (g(x)=x^2-4x+2)
Пределы интегрирования: (a=1, b=4) begin S=int_^left((x-2)-(x^2-4x+2)right)dx=int_^(-x^2+5x-4)dx=\ =left(-frac+frac-4xright)|_^=left(-frac+5cdotfrac-4cdot 4right)-left(-frac13+frac52-4right)=\ =-frac+24+1,5=4,5 end Ответ: 4,5
б) (y=e^, y=frac1x, x=2, x=3)
формула для площади криволинейной трапеции
Функция сверху: (f(x)=e^)
Функция снизу: (g(x)=frac1x)
Пределы интегрирования: (a=2, b=3) begin S=int_^left(e^-frac1xright)dx=(2e^-ln|x|)|_^=left(2e^-ln 3right)-(2e-ln 2)=\ =2e^-2e-ln 3+ln 2=2e(sqrt-1)+lnfrac23 end Ответ: (2e(sqrt-1)+lnfrac23)
в*) (y=3-x^2, y=1+|x|)
Найдем точки пересечения ломаной и параболы: begin 3-x^2=1+|x|Rightarrow x^2+|x|-2=0Rightarrow left[ begin begin xgeq 0\ x^2+x-2=0 end \ begin xlt 0\ x^2-x-2=0 end end right. Rightarrow left[ begin begin xgeq 0\ (x+2)(x-1)=0 end \ begin xlt 0\ (x-2)(x+1)=0 end end right. Rightarrow \ left[ begin begin xgeq 0\ left[ begin x=-2\ x=1 end right. end \ begin xlt 0\ left[ begin x=2\ x=-1 end right. end end right. Rightarrow left[ begin x=1\ x=-1 end right. end формула для площади криволинейной трапеции
Функция сверху: (f(x)=3-x^2)
Функция снизу: (g(x)=1+|x|)
Пределы интегрирования: (a=-1, b=1)
Чтобы не раскрывать модуль под интегралом, заметим, что площади на интервалах [-1;0] и [0;1] равны, т.к. обе функции четные и симметричные относительно оси OY. Поэтому можно рассматривать только положительные (xinleft[0;1right]), найти для них интеграл (площадь) и умножить на 2: begin S=2int_^left((3-x^2)-(1+x)right)dx=2int_^(-x^2-x+2)dx=2left(-frac-frac+2xright)|_^=\ =2left(-frac13-frac12+2right)-0=frac73=2frac13 end Ответ: (2frac13)
г*) (y=3sinx, y=cosx, x=-frac, x=fracpi 4)
формула для площади криволинейной трапеции
На отрезке (left[-frac;-fracright]) синус над косинусом, далее на (left[-frac;fracright]) — косинус над синусом.
Площадь фигуры, закрашенной голубым, в два раза больше площади фигуры, закрашенной сиреневым. Поэтому общая площадь будет равна трем площадям, закрашенным сиреневым: begin S=3int_<-frac>^<-frac>(sinx-cosx)dx=3(-cosx-sinx)|_<-frac>^<-frac>=-3(cosx+sinx)|_<-frac>^<-frac> end Прибавим полный период, он одинаков для обеих функций:
(-frac+2pi=frac; -frac+2pi=frac) begin -3(cosx+sinx)|_<-frac>^<-frac>=-3left(cosleft(fracright)+sinleft(fracright)-cosleft(fracright)-sinleft(fracright)right)=\ =-3left(-frac<sqrt>-frac<sqrt>+frac<sqrt>-frac<sqrt>right)=3sqrt end Ответ: (3sqrt)

Пример 4*. Пусть (S(k)) — это площадь фигуры, образованной параболой (y=x^2+2x-3) и прямой (y=kx+1). Найдите (S(-1)) и вычислите наименьшее значение (S(k)).

формула для площади криволинейной трапецииТочки пересечения прямой и параболы: begin -x+1=x^2+2x-3\ x^2+3x-4=0\ (x+4)(x-1)=0Rightarrow left[ begin x=-4,\ x=1 end right. end Функция сверху: (y=-x+1)
Функция снизу: (y=x^2+2x-3)
Пределы интегрирования: (a=-4, b=1)

begin S(-1)=int_^left((-x+1)-(x^2+2x-3)right)dx=int_^(-x-3x+4)dx=\ =left(-frac-frac+4xright)|_^=left(-frac13-frac32+4right)-left(frac-24-16right)=-21frac23+42frac12=20frac56 end
2) Решаем в общем виде.
Все прямые (y=kx+1) проходят через точку (0;1) и при образовании фигуры находятся над параболой.
Точки пересечения прямой и параболы: begin kx+1=x^2+2x-3Rightarrow x^2+(2-k)x-4=0\ D=(2-k)^2-4cdot (-4)=(k-2)^2+16gt 0 end Дискриминант (Dgt 0) при всех (k). Точки пересечения (пределы интегрирования): $$ x_=frac<-(2-k)pmsqrt>=frac<k-2pmsqrt> $$ Разность корней: $$ x_2-x_1=sqrt=sqrt $$ Минимальное значение разности корней будет при (k=2).
Площадь: begin S(k)=int_^left((kx+1)-(x^2+2x-3)right)dx=int_^(-x^2+(k-2)x+4)dx=\ =left(-frac+frac+4xright)|_^=-frac13(x_2^3-x_1^3)+frac(x_2^2-x_1^2)+4(x_2-x_1) end

формула для площади криволинейной трапецииbegin S(k)_=S(2)\ x_=pm 2\ S(2)=-frac13cdot(2^3+2^3)+0+4sqrt=\ =-frac+16=frac=10frac23 end

Пример 5*. Фигура ограничена линиями (y=(x+3)^2, y=0, x=0). Под каким углом к оси OX надо провести прямые через точку (0;9), чтобы они разбивали фигуру на три равновеликие части?

формула для площади криволинейной трапецииПлощадь криволинейной трапеции AOB: begin S_0=int_^(x+3)^2dx=frac|_^=\ =9-0=9 end Площадь каждой части: (S_i=frac13 S_0=3)
Точки (C(x_1; 0)) и (D(x_2; 0)) c (-3lt x_1lt x_2lt 0) такие, что прямые AC и AD отсекают по 1/3 от фигуры.
Площадь прямоугольного треугольника (triangle AOD): begin S_3=frac12|x_2|cdot 9=3Rightarrow |x_2|=frac69=frac23Rightarrow\ x_2=-frac23 end Площадь прямоугольного треугольника (triangle AOC): begin S_2+S_3=frac12|x_1|cdot 9=6Rightarrow |x_1|=frac=frac43Rightarrow\ x_1=-frac43 end

Находим углы соответствующих прямых.
Для (x_1: tgalpha=frac=frac=frac, alpha=arctgfrac)
Для (x_x: tgbeta=frac=frac=frac, beta=arctgfrac)

Видео:Криволинейная трапеция и ее площадь. 11 класс.Скачать

Криволинейная трапеция и ее площадь. 11 класс.

11.1.9.2. Площадь криволинейной трапеции. Примеры

Площадь криволинейной трапеции, ограниченной сверху графиком функции y=f (x), снизу — осью Ох, слева и справа прямыми х= a , x= b , находят по формуле Ньютона-Лейбница (ф. Н-Л):

формула для площади криволинейной трапеции

формула для площади криволинейной трапецииПример 1. Найти площадь криволинейной трапеции, ограниченной линиями: y=4x-x²; y=0 ; x=0 ; x=4 .

Решение. Строим графики данных линий. (рис. 1).
1) y=4x-x² — парабола (вида y=ax²+bx+c). Запишем данное уравнение в общем виде: y=-x²+4x. Ветви этой параболы направлены вниз, так как первый коэффициент а=-1 О′(2; 4). Нули функции (точки пересечения графика с осью Ох) найдем из уравнения:

Выносим х за скобки, получаем: х(4-х)=0. Отсюда, х=0 или х=4. Абсциссы точек найдены, ордината равна нулю — искомые точки: (0; 0) и (4; 0).

2) y=0 — это ось Ох; 3) х=0 — это ось Оy; 4) х=4 — прямая, параллельная оси Оy и отстоящая от нее на 4 единичных отрезка вправо.

Площадь построенной криволинейной трапеции находим по (ф. Н-Л). У нас f (x)=4x-x², a =0 , b =4 .

формула для площади криволинейной трапеции

Кстати, если Вы подсчитаете все целые заштрихованные клетки и добавите к ним половину всех остальных клеток заштрихованной фигуры, то получите приближенное значение искомой площади. Действительно, если единичный отрезок равен одной клетке, то площадь квадратика со стороной, равной 1 клетке, равна 1·1=1 (кв. ед.). Сколько квадратиков — столько квадратных единиц и составляет площадь фигуры.

Пример 2. Найти площадь криволинейной трапеции, ограниченной линиями:

формула для площади криволинейной трапеции

Решение. Строим графики данных линий. (рис. 2).

Видео:Криволинейная трапеция и ее площадь. Практическая часть. 11 класс.Скачать

Криволинейная трапеция и ее площадь. Практическая часть. 11 класс.

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №23.Площадь криволинейной трапеции. Интеграл и его свойства.

Перечень вопросов, рассматриваемых в теме

1) Нахождение определенного интеграла

2) Нахождение площади криволинейной трапеции с помощью формулы Ньютона – Лейбница

3) Решение задач, с помощью формулы Ньютона – Лейбница

формула для площади криволинейной трапеции

Формула Ньютона – Лейбница

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

ОрловаЕ. А., СеврюковП. Ф., СидельниковВ. И., СмоляковА.Н.Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Криволинейной трапецией называется фигура, ограниченная графиком непрерывной и не меняющей на отрезке [а;b] знака функции f(х), прямыми х=а, x=b и отрезком [а;b].

Отрезок [a;b] называют основанием этой криволинейной трапеции

формула для площади криволинейной трапеции

формула для площади криволинейной трапеции

формула Ньютона – Лейбница

Если в задаче требуется вычислить площадь криволинейной трапеции, то ответ всегда будет положительный. Если требуется, используя чертеж, вычислить интеграл, то его значение может быть любым(зависит от расположения криволинейной трапеции).

Примеры и разбор решения заданий тренировочного модуля

№1.Найти площадь криволинейной трапеции, изображенной на рисунке

формула для площади криволинейной трапеции

Для вычисления площади криволинейной трапеции воспользуемся формулой Ньютона – Лейбница.

формула для площади криволинейной трапеции

Ответ: формула для площади криволинейной трапеции

№2. Вычислить определенный интеграл:

Решение: Воспользуемся формулой Ньютона-Лейбница.

формула для площади криволинейной трапеции

Сначала находим первообразную функцию F(x) . Далее подставляем значение верхнего предела в первообразную функцию: F(b) .

Затем подставляем значение нижнего предела в первообразную функцию: F(а).

Рассчитываем разность F(b) — F(а), это и будет ответ.

формула для площади криволинейной трапеции

№3. Найти площадь криволинейной трапеции (х-1) 2 , ограниченной линиями х=2 и х=1, осью 0х

Воспользуемся формулой Ньютона-Лейбница.

формула для площади криволинейной трапеции

Сначала находим первообразную функцию F(x). Далее подставляем значение верхнего предела в первообразную функцию: F(b) .

Затем подставляем значение нижнего предела в первообразную функцию: F(а).

Рассчитываем разность F(b) — F(а), это и будет ответ.

🎦 Видео

ИНТЕГРАЛ | площадь криволинейной трапецииСкачать

ИНТЕГРАЛ | площадь криволинейной трапеции

Площадь криволинейной трапецииСкачать

Площадь криволинейной трапеции

Урок 17. Площадь криволинейной трапеции. Алгебра 11 класс.Скачать

Урок 17. Площадь криволинейной трапеции. Алгебра 11 класс.

Криволинейная трапеция и ее площадь. Практическая часть. 11 класс.Скачать

Криволинейная трапеция и ее площадь. Практическая часть. 11 класс.

Алгебра 11 класс (Урок№23 - Площадь криволинейной трапеции. Интеграл и его свойства.)Скачать

Алгебра 11 класс (Урок№23 - Площадь криволинейной трапеции. Интеграл и его свойства.)

Нахождение площади криволинейной трапецииСкачать

Нахождение площади криволинейной трапеции

§56 Площадь криволинейной трапеции и интегралСкачать

§56 Площадь криволинейной трапеции и интеграл

Площадь криволинейной трапецииСкачать

Площадь криволинейной трапеции

11 класс, 21 урок, Определённый интегралСкачать

11 класс, 21 урок, Определённый интеграл

Вычисление площади криволинейной трапецииСкачать

Вычисление площади криволинейной трапеции

Определенный интеграл. Площадь трапеции.Скачать

Определенный интеграл. Площадь трапеции.

Математика. Площадь криволинейной трапеции. Формула Ньютона Лейбница. ПовторениеСкачать

Математика. Площадь криволинейной трапеции. Формула Ньютона Лейбница. Повторение

Площадь криволинейной трапеции | Интегралы | Математический анализСкачать

Площадь криволинейной трапеции | Интегралы | Математический анализ

Найти площадь криволинейной трапеции #1Скачать

Найти площадь криволинейной трапеции #1

Площадь криволинейной трапеции. Интеграл и его свойстваСкачать

Площадь криволинейной трапеции. Интеграл и его свойства

Площадь криволинейной трапецииСкачать

Площадь криволинейной трапеции

Площадь криволинейной трапецииСкачать

Площадь криволинейной трапеции
Поделиться или сохранить к себе: