В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи. Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.
Основные свойства площадей.
Свойство №1
Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться.
Доказательство: Рассмотрим ▲ ABC и ▲ ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h — высоте ▲ ABC и ▲ ADC . Если площадь треугольника находится по формуле $$S = frac cdot a cdot h$$, то $$S_ = S_ = frac cdot AC cdot h$$.
Свойство №2
Доказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b. Рассмотрим отношение площадей этих треугольников $$frac<S_><S_>= frac<frac cdot a cdot h_><frac cdot b cdot h_>$$. Упростив, получим $$frac<S_><S_>= frac$$.
Свойство №3
Если два треугольника имеют общий угол, то их площади относятся как произведение сторон, заключающих этот угол.
Доказательство: Рассмотрим ▲ABC и ▲MBN с общим углом B , где AB = a, BC = b, MB = a1и NB = b1. Пусть S1 = SMBN и S2 = SABC . Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$, рассмотрим отношение площадей ▲ABC и ▲MBN .
Свойство №4
Отношение площадей подобных треугольников равны квадрату коэффициента подобия.
Доказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$angle ABC = angle MBN$$. Используя формулу площади треугольника вида $$S = frac cdot a cdot b cdot singamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$frac<S_><S_> = frac<frac cdot AB cdot BC cdot sin B><frac cdot MB cdot NB cdot sin B>= frac = k^$$ .
Медиана треугольника делит его на две равновеликие части.
Доказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = fracAC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = fraccdot a cdot h$$. Получим $$S_ = fraccdot AM cdot h$$ и $$S_ = fraccdot MC cdot h$$. Значит $$S_ = S_$$.
Свойство №6
Медианы треугольника делят его на три равновеликие части.
Доказательство: Рассмотрим ▲ABC . Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB , ▲BOC , ▲AOC . Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK , они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK — медиана, значит площади треугольников ▲AOK и ▲COK равны. Отсюда следует, что S1 = S2 . Аналогично можно доказать, что S2 = S3 и S3 = S1 .
Средние линии треугольника площади S отсекают от него треугольники площади .
Доказательство: Рассмотрим ▲ABC . NM — средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_ = frac cdot NM cdot h_= frac(frac cdot AC)(fraccdot h) = fraccdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC .
Медианы треугольника делят его на 6 равновеликих частей.
Видео:Отношение площадей треугольников с равным угломСкачать
Равновеликие треугольники
Равновеликие треугольники — это треугольники, которые имеют одинаковую площадь.
Равновеликие треугольники могут быть равными (так как равные треугольники имеют равные площади), но также могут иметь разные стороны и разные углы.
Например, треугольники ABC и MKF — равновеликие, так как их площади равны.
Можно заметить, что если сторону треугольника увеличить в k раз, а высоту, проведенную к этой стороне, уменьшить в k раз, то получим треугольник, равновеликий данному.
Равновеликие треугольники в треугольнике
Медиана делит треугольник на два равновеликих треугольника.
Равновеликие треугольники в трапеции
При пересечении диагоналей в произвольной трапеции ABCD образуется три пары равновеликих треугольников:
1) ∆ABD и ∆ACD,
1) Проведём в треугольниках ABD и ACD высоты BH и CF.
BK=CF (как высоты трапеции), следовательно,
3)
Так как площади треугольников ABD и ACD равны (по доказанному), то и
Таким образом, треугольники , образованные боковыми сторонами и диагоналями трапеции, имеют равные площади.
Видео:Площади треугольников с равным углом.Скачать
Первый признак равенства треугольников
Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.
Давайте рассмотрим три признака равенства треугольников.
Теорема 1. Равенство треугольников по двум сторонам и углу между ними.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.
Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.
Значит, происходит совмещение вершин В и В1, С и С1.
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Второй признак равенства треугольников
Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.
Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.
AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.
CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.
Вершина B совпадает с вершиной B1.
Видео:8 класс, 21 урок, Отношение площадей подобных треугольниковСкачать
Третий признак равенства треугольников
Теорема 3. Равенство треугольников по трем сторонам.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.
Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.
Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.
Если угол, сторона, противолежащая этому углу, и высота, опущенная на другую сторону, одного треугольника соответственно равны углу, стороне и высоте другого треугольника — такие треугольники равны.
Если две стороны и медиана, заключенная между ними, одного треугольника соответственно равны двум сторонам и медиане другого треугольника — такие треугольники равны.
Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника — такие треугольники тоже равны.
Если две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника — вы уже догадались сами: эти ребята равны.
Два треугольника равны, если сторона, медиана и высота, проведенные к другой стороне, одного треугольника соответственно равны стороне, медиане и высоте другого треугольника.
Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.
🔍 Видео
9 класс, 12 урок, Теорема о площади треугольникаСкачать
Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать