что такое эффективная площадь излучения

Видео:эффективная площадь рассеянияСкачать

эффективная площадь рассеяния

Теоретические основи радиолокации

Эффективная площадь рассеяния

что такое эффективная площадь излучения

Рисунок 1: Круговая диаграмма ЭПР самолета В-26 для частоты 3 ГГЦ (по Сколнику).

что такое эффективная площадь излучения

Рисунок 1: Круговая диаграмма ЭПР самолета В-26 для частоты 3 ГГЦ (по Сколнику).

Эффективная площадь рассеяния

Способность радиолокационной цели (РЛЦ) отражать падающую на нее электромагнитную энергию характеризуется эффективной площадью рассеяния ( σ ). Единицей измерения этого параметра является квадратный метр (м²). В литературе по радиолокации также можно встретить и другие названия: эффективная поверхность рассеяния, эффективная поверхность цели, эффективная площадь цели, эффективная поверхность вторичного излучения, радиолокационное поперечное сечение. Далее будем использовать термин эффективная площадь рассеяния (ЭПР).

Определение.

Под ЭПР понимают площадь эквивалентного изотропного рассеивателя, который, будучи помещен в точку нахождения цели, создает на раскрыве приемной антенны такую же плотность потока мощности, что и реальная цель. Таким образом, ЭПР является абстракцией, моделью, дающей, однако возможность оценить отражательную способность РЛЦ. Очевидно, что ЭПР может использоваться и для оценки радиолокационной заметности цели.

На величину ЭПР влияет множество факторов, к основным из которых относятся следующие:

  • размеры и геометрическая форма цели;
  • ракурс наблюдения цели, который определяет, какая именно часть поверхности цели облучается зондирующей электромагнитной волной (ЭМВ);
  • рабочая частота радиолокатора, а точнее, соотношение между длиной волны локатора и характерными размерами цели;
  • электрические свойства материала, из которого выполнена конструкция цели.

Влияние перечисленных факторов является комплексным и поэтому учитывать их нужно тоже совместно.

что такое эффективная площадь излучения

Рисунок 2. Самолет F-117, построенный с применением технологии снижения радиолокационной заметности “Stealth”

Самолет F-117 разработан с применением технологии снижения радиолокационной заметности “Stealth” . Особенности его конструкции и свойства применяемых покрытий обеспечивают низкие значения ЭПР для сантиметровых длин волн, которые используются радиолокаторами зенитных ракетных (артиллерийских) комплексов. Однако радиолокаторы метрового диапазона длин волн (П-12 « Енисей » и П-18 « Терек ») успешно обнаруживают такие самолеты. Данная ситуация имела место на практике во время боевых действий в бывшей Югославии (1999).

Расчет ЭПР

Аналитические выражения для расчета значений ЭПР могут быть получены лишь для ограниченного набора целей, имеющих простую форму поверхности. Большинство РЛЦ имеют сложную геометрическую форму поверхности и для определения их ЭПР применяются натурные измерения, а также методы физического или математического моделирования.

На Рисунке 1 изображена полученная экспериментально круговая диаграмма ЭПР самолета В-26 для частоты 3 ГГЦ (по Сколнику). Исходное математическое выражение для расчета ЭПР в случае совмещенного приема (однопозиционной локации) может быть представлено в виде:

где

σ =4π r 2 Srr — радиус эквивалентного рассеивателя
Sr — плотность потока мощности падающей волны в точке нахождения цели
St — плотность потока мощности рассеянной волны у антенны радиолокатора.
(1)
St

Ниже, в Таблице 1, приведены формулы для расчета ЭПР некоторых объектов простой формы. Формулы получены для случаев, когда длина волны λ радиолокатора намного меньше характерного размера цели, а поверхность объекта является идеально проводящей.

что такое эффективная площадь излучения
формула для расчета ЭПР сферы радиуса R
σmax = π r 2(2)
что такое эффективная площадь излучения
формула для расчета ЭПР цилиндра длины h с радиусом основания r
σmax =2π r h 2(3)
λ
что такое эффективная площадь излучения
формула для расчета ЭПР прямоугольной пластины со сторонами b и h , расположенной перпендикулярно направлению зондирования.
σmax =4π b 2 h 2(4)
λ 2
что такое эффективная площадь излучения

Таблица 1: Формулы для расчета ЭПР некоторых объектов простой формы

что такое эффективная площадь излучения

Рисунок 3: Круговая диаграмма ЭПР самолета типа бомбардировщик для длины волны от 3 до 5 м

что такое эффективная площадь излучения

Рисунок 3: Круговая диаграмма ЭПР самолета типа бомбардировщик для длины волны от 3 до 5 м

На последнем рисунке Таблицы 1 изображена ситуация, когда плоская пластина располагается под углом к направлению зондирования. В данной ситуации рассеянная таким объектом ЭМВ практически не отражается в направлении радиолокатора и, следовательно, его ЭПР будет иметь малые значения. Именно такой метод снижения радиолокационной заметности применен в самолете F-117 (Рисунок 2), поверхность которого составлена из большого количества наклонных пластин. Эти пластины ориентированы таким образом, чтобы при падении на них ЭМВ из передней полусферы (оттуда, где, как правило, находятся средства противовоздушной обороны противника) отраженные волны направлялись бы в заднюю полусферу.

Для обнаружения подобных целей более эффективным является использование бистатических радиолокационных систем, в которых передающие и приемные пункты разнесены в пространстве.

ЭПР точечных целей

Геометрические размеры РЛЦ большинства типов не превышают размеров импульсного объема радиолокатора, предназначенного для их обнаружения. Цели, имеющие такие размеры, называют точечными. ЭПР таких целей определяется взаимодействием ЭМВ, отраженных от так называемых «блестящих» точек. «Блестящими» точками называют элементы поверхности цели, которые при заданных условиях наблюдения (длина волны радиолокатора, ракурс зондирования) вносят наибольший вклад в рассеянное объектом поле, а значит и в ЭПР. В зависимости от взаимного расположения «блестящих» точек, а также направления наблюдения, отраженные ими волны могут иметь различные фазовые соотношения: от синфазного (тогда интенсивность результирующего отражения возрастает) до противофазного (интенсивность отражения уменьшается). Именно этот эффект определяет осциллирующий характер ЭПР в зависимости от ракурса наблюдения, при этом круговая диаграмма ЭПР имеет изрезанный характер (см. Рисунок 3).

Тип целиЭПР [м 2 ]ЭПР [дБ]
Птица0.01-20
Человек10
Катер1010
Автомобиль10020
Грузовой автомобиль20023
Уголковый отражатель2037943.1

Таблица 2: ЭПР точечных целей

Следует отметить, что быстрота осцилляции ЭПР в зависимости от угла наблюдения определяется соотношением между длиной волны радиолокатора и характерными размерами цели: чем меньше длина волны по сравнению с размерами цели, тем сильнее осцилляция ЭПР (Рисунок 3).

Учитывая значительные колебания величины ЭПР, в некоторых случаях оказывается удобным представлять ее значения в логарифмическом масштабе, например, в децибелах (дБ) относительно единичной площади (1 м²).

В Таблице 2 приведены значения ЭПР (в квадратных метрах и в децибелах) некоторых типовых РЛЦ для «Х»-диапазона.

Издатель: Кристиан Вольф, Автор: Андрій Музиченко
Текст доступен на условиях лицензий: GNU Free Documentation License
а также Creative Commons Attribution-Share Alike 3.0 Unported License,
могут применяться дополнительные условия.
(Онлайн с ноября 1998 года)

Видео:Расчет эффективной площади рассеяния (ЭПР) в WIPL-DСкачать

Расчет эффективной площади рассеяния (ЭПР) в WIPL-D

Эффективная площадь рассеяния цели (ЭПР).

Радиолокация. Радиолокационные цели. ЭПР.

(реферат)

Содержание

2.Радиолокационные цели_ 6

2.1.Эффективная площадь рассеяния цели (ЭПР). 8

2.2.Сложные и групповые цели_ 9

2.3.Объемно-распределенные цели_ 11

2.4. Поверхностно-распределенные цели_ 14

Список литературы_ 18

Ведение

Радиолокация представляет собой средство расширения возможностей человека определять наличие и положение объектов за счет использования явлений отражения радиоволн этими объектами. Ее ближайшим конкурентом при выполнении этих функций является оптическая техника, включающая телескопы, которые обладают высокой точностью и обычно имеют фотографические регистрирующие устройства. Преимущество радиолокационных средств по сравнению с оптическими состоит в том, что радиолокационные устройства могут работать в темноте и сквозь облака, обладают большой дальностью действия и позволяют определять дальность до объекта со значительно большей точностью, нежели оптические устройства. Хотя световые волны также являются электромагнитными, но в радиолокации частота их намного ниже. Это позволяет применять радиотехнические методы и схемы.

Развитие радиолокации явилось важной частью технической революции двадцатого века. Военная техника, использующая принципы радиолокации, впервые была создана перед самым началом второй мировой войны; с этого времени наблюдается быстрый и непрерывный прогресс в указанной области.

Основная идея радиолокации состоит в том, что электромагнитные волны распространяются через атмосферу по определенным законам с известной скоростью, приблизительно равной скорости света в вакууме. Любые препятствия или изменения характеристик среды на пути распространения радиоволн приводят к возникновению отражений, которые могут быть обнаружены и, таким обра­зом, становятся источником информации о наличии и свойствах таких препятствий или изменений. Измерение времени запаздывания отраженного сигнала по отношению к излученному позволяет получить данные о положении препятствия, т. е. «цели». В случае обычной «однопозиционной» радиолокации (когда передатчик и приемник совмещены и расположены в одном месте в отличие от «двухпозиционных»[1] систем , в которых отраженный сигнал принимается в пункте, удаленном от передатчика) время запаздывания непосредственно характеризует расстояние от места расположения приемника и передатчика до цели. Измерение времени запаздывания облегчается, если передатчик излучает короткие импульсы электромагнитной энергии. Идея импульсного излучения лежит в основе большинства практических применений радиолокации.

Информация о скорости целей может быть получена измерением доплеровского сдвига частоты между излученными и принятыми колебаниями, а угловые координаты удаленных целей — посредством сопоставления характеристик отраженных сигналов с диаграммами направленности передающей и приемной антенн. Наконец, сведения о размерах, форме и отражательной способности цели можно получить путем сравнения формы огибающей отраженных и излученных колебаний.

В зависимости от особенностей применения, радиолокационная информация может быть представлена в различном виде. Имеется ряд методов индикации с использованием осциллоскопов, которые создают оператору удобные условия для наблюдения за наличием, положением и размерами целей. Так, в радиолокационных станциях (РЛС) обнаружения целей индикатор кругового обзора (ИКО) с яркостной отметкой является эффективным средством отображения «картины» расположения целей вокруг РЛС. С другой стороны, изменения положения цели могут явиться источником формирования напряжений, управляющих положением антенны (в случае РЛС сопровождения цели) для обеспечения прицеливания и стрельб соответствующими видами оружия, либо для управления полетом ракет путем использования линии связи. Чтобы решить некоторые важные задачи, данные, полученные при помощи радиолокационной станции, запоминаются в соответствующей форме для дальнейшей их обработки на электронной вычислительной машине.

Практические применения радиолокации в настоящее время отличаются большим разнообразием. Некоторые из наиболее важных задач радиолокации связаны с ее применением в военной технике; сюда относится обзор пространства и обнаружение самолетов противника и наземных подвижных объектов, обеспечение данных для управления орудийным огнем, а также данных для управления ракетами в полете. Кроме того, радиолокационные средства широко используются в навигации как самолетов, так и кораблей (особен­но в ночное время и в условиях тумана), они являются важным элементом современных систем управления воздушным движением, используются с целью управления движением автомашин и имеют большое значение для обеспечения прогнозов погоды. Радиолокация — отличное средство для исследования земной атмосферы и ионосферы, а также для изучения метеоров. В настоящее время радиолокационные устройства используются для обзора космического пространства, обнаружения и слежения за искусственными спутниками Земли, а также в системах противоракетной обороны. Также радиолокация применяется для астрономических наблюдений соседних космических тел солнечной системы: Луны, Солнца, Венеры, Марса и Юпитера. Области применения радиолокации по мере дальнейшего освоения космического пространства, по всей вероятности, будут все больше расширяться. Последние годы не менее актуальными стали вопросы подповерхностного зондирования и нелинейной локации. Подповерхностная радиолокация дает информацию о свойствах и параметрах среды, ее неоднородности. Нелинейная радиолокация (поиск элементов с p-n переходом или нелинейной вольтамперной характеристикой), используется при поиске от различных радиозакладок, «жучков» и прочих электронных средств незаконного съема информации, до радиоуправляемых фугасов и взрывных устройств.

Радиолокационная техника, с одной стороны, использует многие передовые отрасли современной техники, с другой стороны, способствует их развитию. Т.е. на всех этапах своего развития и применения радиолокация тесно переплетается с другими областями науки и техники.

Полезно указать на некоторые другие типы систем, родственных радиолокации: звуколокационные (эхолокационные) системы работают по такому же принципу, как и РЛС, но используют вместо радиоволн акустические волны, радионавигационная система Лоран, хотя и не основана на использовании отраженных сигналов, однако для определения расстояний здесь также необходимо измерять время запаздывания при распространении радиоволн. Многие методы анализа и расчета радиолокационных систем полностью применимы и к этим родственным системам.

Радиолокационные цели

Электромагнитная волна, падающая на объект, независимо от его природы вызывает вынужденные колебания свободных и связанных зарядов, синхронные с колебаниями падающего поля. Вынужденные колебания зарядов создают вторичное поле внутри или вне тела. В результате этого энергия электромагнитной волны, падающей на цель, рассеивается во всех направлениях, в том числе и в направлении к радиолокационной станции. Приходящая в точку приема, переизлученная волна представляет собой отраженный целью сигнал.

Характер вторичного излучения (отражения) электромагнитных волн зависит от формы объекта, расположенного на пути их распространения, его размеров и электрических свойств, а также от длины падающей волны и ее поляризации.

Принято различать зеркальное, диффузное и резонансное отражения. Если линейные размеры отражающей поверхности много больше длины волны, а сама поверхность гладкая, то возникает зеркальное отражение. При этом угол падения радиолуча равен углу отражения, и волна вторичного излучения не возвращается к РЛС (за исключением случая нормального падения).

Если линейные размеры поверхности объекта велики по сравнению с длиной волны, а сама поверхность шероховатая, что имеет место диффузное отражение. При этом благодаря различной ориентации элементов поверхности электромагнитные волны рассеиваются в различных направлениях, в том числе и в направлении на РЛС. Резонансное отражение наблюдается в том случае, когда линейные размеры отражающих объектов или их элементов равны нечетному числу полуволн. В отличие от диффузного отражения, вторичное резонансное излучение обычно обладает большой интенсивностью и резко выраженной направленностью, зависящей от конструкции и ориентации вызывающего отражение элемента.

В тех случаях, когда длина волны велика по сравнению с линейными размерами цели, падающая волна огибает цель и интенсивность отраженной волны ничтожно мала.

С точки зрения формирования сигнала при отражении объекты радиолокационного наблюдения принято делить на малоразмерные и распределенные в пространстве или на поверхности.

К малоразмерным относятся объекты, размеры которых значительно меньше размеров элемента разрешения РЛС по дальности и угловым координатам. В ряде случаев малоразмерные объекты имеют простейшую геометрическую конфигурацию. Их отражающие свойства могут быть легко определены теоретически и предсказаны для каждого конкретного относительного расположения рассматриваемой цели и РЛС. В реальных условиях цели простейшего типа встречаются довольно редко. Чаще приходится иметь дело с объектами сложной конфигурации, которые состоят из целого ряда жестко связанных между собой простейших отражающих элементов. Примерами целей сложной конфигурации могут служить самолеты, корабли, различные сооружения и т. д.

Другие цели представляют собой совокупность отдельных объектов, распределенных в определенной области пространства, значительно превышающей по своим размерам элемент разрешения РЛС. В зависимости от характера этого распределения различают объемно-распределенные (например, дождевое облако) и поверхностно-распределенные (поверхность суши и т. д.) цели. Отраженный от такой цели сигнал является результатом интерференции сигналов отражателей, распределенных в пределах элемента разрешения.

Для фиксированного взаимного положения РЛС и отражающих объектов амплитуда и фаза отраженной волны имеют вполне определенную величину. Поэтому в принципе для каждого конкретного случая может быть определен результирующий суммарный отраженный сигнал. Однако в процессе радиолокационного наблюдения относительное положение целей и РЛС обычно меняется, что приводит к случайным флюктуациям интенсивности и фазы результирующих отраженных сигналов.

Эффективная площадь рассеяния цели (ЭПР).

Расчет дальности радиолокационного наблюдения требует количественной характеристики интенсивности отраженной волны. Мощность отраженного сигнала на входе приемника станции зависит от целого ряда факторов и прежде всего от отражающих свойств цели. Обычно радиолокационные цели характеризуются эффективной площадью рассеяния. Под эффективной площадью рассеяния цели в случае, когда антенна РЛС излучает и принимает электромагнитные волны одной и той же поляризации, понимается величина σц, удовлетворяющая равенству σцП1=4πК 2 П2, где П1 -плотность потока мощности прямой волны данной поляризации в точке расположения цели; П2 — плотность потока мощности отраженной от цели волны данной поляризации у антенны РЛС; R — расстояние от РЛС до цели. Значение ЭПР непосредственно может быть вычислено по формуле

Как следует из формулы приведенной выше, σц имеет размерность площади. Поэтому ее условно можно рассматривать как некоторую эквивалентную цели нормальную радиолучу площадку площадью σц, которая, изотропно рассеивая всю падающую на нее от РЛС мощность волны, создает в точке приема ту же плотность потока мощности П2, что и реальная цель.

Если задана ЭПР цели, то при известных величинах П1 и R можно вычислить плотность потока мощности отраженной волны П, а затем, определив мощность принимаемого сигнала, оценить дальность действия радиолокационной станции.

Эффективная площадь рассеяния σц не зависит ни от интенсивности излучаемой волны, ни от расстояния между станцией и целью. Действительно, всякое увеличение П1 ведет к пропорциональному увеличению П2 и их отношение в формуле не изменяется. При изменении расстояния между РЛС и целью отношение П21 меняется обратно пропорционально R 2 и величина σц при этом остается неизменной.

Видео:Расчет эффективной площади рассеяния (ЭПР) тел сложной формы в Altair Feko 2021Скачать

Расчет эффективной площади рассеяния (ЭПР) тел сложной формы в Altair Feko 2021

Эффективная площадь рассеяния

  • Эффекти́вная пло́щадь рассе́яния (ЭПР; в некоторых источниках — эффективная пове́рхность рассеяния, эффективный попере́чник рассеяния, эффективная отража́ющая площадь, ЭОП) в радиолокации — площадь некоторой фиктивной плоской поверхности, расположенной нормально к направлению падающей плоской волны и являющейся идеальным и изотропным переизлучателем, которая, будучи помещена в точку расположения цели, создаёт в месте расположения антенны радиолокационной станции ту же плотность потока мощности, что и реальная цель.

ЭПР является количественной мерой свойства объекта рассеивать электромагнитную волну. Наряду с энергетическим потенциалом приемопередающего тракта и КУ антенн РЛС, ЭПР объекта входит в уравнение дальности радиолокации и определяет дальность, на которой объект может быть обнаружен радиолокатором. Повышенное значение ЭПР означает бо́льшую радиолокационную заметность объекта, снижение ЭПР затрудняет обнаружение (см. стелс-технология).

ЭПР конкретного объекта зависит от его формы, размеров, материала, из которого он изготовлен, от его ориентации (ракурса) по отношению к антеннам передающей и приемной позиций РЛС (в том числе, и от поляризации электромагнитных волн), от длины волны зондирующего радиосигнала. ЭПР определяется в условиях дальней зоны рассеивателя, приемной и передающей антенн радиолокатора.

Поскольку ЭПР — формально введенный параметр, то её значение не совпадает ни со значением полной площади поверхности рассеивателя, ни со значением площади его поперечного сечения (англ. Cross-Section). Расчет ЭПР — одна из задач прикладной электродинамики, которая решается с той или иной степенью приближения аналитически (только для ограниченного ассортимента тел простой формы, например, проводящей сферы, цилиндра, тонкой прямоугольной пластины и т. п.) или численными методами. Измерение (контроль) ЭПР проводится на полигонах и в радиочастотных безэховых камерах с использованием реальных объектов и их масштабных моделей.

ЭПР имеет размерность площади и обычно указывается в м² или дБкв.м. Для объектов простой формы — тестовых — ЭПР принято нормировать к квадрату длины волны зондирующего радиосигнала. ЭПР протяженных цилиндрических объектов нормируют к их длине (погонная ЭПР, ЭПР на единицу длины). ЭПР распределенных в объёме объектов (например, дождевого облака) нормируют к объёму элемента разрешения РЛС (ЭПР/м³). ЭПР поверхностных целей (как правило, участка земной поверхности) нормируют к площади элемента разрешения РЛС (ЭПР/м²). Иными словами, ЭПР распределенных объектов зависит от линейных размеров конкретного элемента разрешения конкретной РЛС, которые зависят от расстояния РЛС — объект.

ЭПР можно определить следующим образом (определение эквивалентно приведенному в начале статьи):

Эффективная площадь рассеяния (для гармонического зондирующего радиосигнала) — отношение мощности радиоизлучения эквивалентного изотропного источника (создающего в точке наблюдения такую же плотность потока мощности радиоизлучения, что и облучаемый рассеиватель) к плотности потока мощности (Вт/м²) зондирующего радиоизлучения в точке расположения рассеивателя.

ЭПР зависит от направления от рассеивателя на источник зондирующего радиосигнала и направления в точку наблюдения. Поскольку эти направления могут не совпадать (в общем случае источник зондирующего сигнала и точка регистрации рассеянного поля разнесены в пространстве), то определенная таким образом ЭПР называется бистатической ЭПР (двухпозиционной ЭПР, англ. bistatic RCS).

Диаграмма обратного рассеяния (ДОР, моностатическая ЭПР, однопозиционная ЭПР, англ. monostatic RCS, back-scattering RCS) — значение ЭПР при совпадении направлений от рассеивателя на источник зондирующего сигнала и на точку наблюдения. Под ЭПР часто подразумевают её частный случай — моностатическую ЭПР, то есть ДОР (смешивают понятия ЭПР и ДОР) из-за малой распространенности бистатических (многопозиционных) РЛС (по сравнению с традиционными моностатическими РЛС, оснащенными единой приемо-передающей антенной). Тем не менее, следует различать ЭПР(θ, φ; θ0, φ0) и ДОР(θ, φ) = ЭПР(θ, φ; θ0=θ, φ0=φ), где θ, φ — направление на точку регистрации рассеянного поля; θ0, φ0 — направление на источник зондирующей волны (θ, φ, θ0, φ0 — углы сферической системы координат, начало которой совмещено с рассеивателем).

В общем случае для зондирующей электромагнитной волны с негармонической временной зависимостью (широкополосный в пространственно-временно́м смысле зондирующий сигнал) эффективная площадь рассеяния — отношение энергии эквивалентного изотропного источника к плотности потока энергии (Дж/м²) зондирующего радиоизлучения в точке расположения рассеивателя.

🎥 Видео

3.4 Поглощенная и эффективная дозыСкачать

3.4 Поглощенная и эффективная дозы

Дозы излученияСкачать

Дозы излучения

Характеристики радиолокационного рассеяния.Скачать

Характеристики радиолокационного рассеяния.

Для определения эффективной температуры звёзд используют закон Стефана–БольцманаСкачать

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана

Тепловое излучение. 9 класс.Скачать

Тепловое излучение. 9 класс.

Тепловое излучение. Законы: Стефана-Больцмана, Кирхгофа, Вина. Формула ПланкаСкачать

Тепловое излучение. Законы: Стефана-Больцмана, Кирхгофа, Вина. Формула Планка

Лутовинов Александр - Лекция "Инструменты в рентгеновской и гамма астрофизике"Скачать

Лутовинов Александр -  Лекция "Инструменты в рентгеновской и гамма астрофизике"

Вебинар №1 - Моделирование ЭПР и рассеяния в радиолокационных системах.Скачать

Вебинар №1 - Моделирование ЭПР и рассеяния в радиолокационных системах.

Расчет ЭПР ракеты (RCS - Radar Cross-Section)Скачать

Расчет ЭПР ракеты (RCS - Radar Cross-Section)

Лекция 3. Расчет дальности действия радиолиний.Скачать

Лекция 3. Расчет дальности действия радиолиний.

Радиационная безопасность при работе с источниками ионизирующих излученийСкачать

Радиационная безопасность при работе с источниками ионизирующих излучений

XVII.E.37 - Моделирование обратного рассеяния микроволнового излучения - Чечин Д.Г.Скачать

XVII.E.37 - Моделирование обратного рассеяния микроволнового излучения - Чечин Д.Г.

Математика 2 класс. Что такое площадь фигуры и единицы измерения площади. ВидеоурокиСкачать

Математика 2 класс. Что такое площадь фигуры и единицы измерения площади. Видеоуроки

Верходанов Олег - Лекция "Радиоинтерферометрия"Скачать

Верходанов Олег - Лекция "Радиоинтерферометрия"

Верходанов Олег. Удивительная радиовселенная. Лекция 2 из 6Скачать

Верходанов Олег. Удивительная радиовселенная. Лекция 2 из 6

Нечипуренко Д. Ю. - Экспериментальные методы в биофизике - Кристалл и рентгеновским излучениемСкачать

Нечипуренко Д. Ю. - Экспериментальные методы в биофизике - Кристалл и рентгеновским излучением

10 Для определения эффективной температуры звёзд используют закон Стефана–БольцманаСкачать

10  Для определения эффективной температуры звёзд используют закон Стефана–Больцмана
Поделиться или сохранить к себе: