что называют статическим моментом площади

Видео:Статический момент площади сечения (фигуры) относительно осиСкачать

Статический момент площади сечения (фигуры) относительно оси

Техническая механика

Сопротивление материалов

Видео:Основы Сопромата. Геометрические характеристики поперечного сеченияСкачать

Основы Сопромата. Геометрические характеристики поперечного сечения

Геометрические характеристики плоских сечений

При некоторых видах деформаций прочность и жесткость (способность противостоять деформации) элементов конструкций зависит не только от величины поперечного сечения, но и от формы этого сечения.
что называют статическим моментом площадиСамый простой пример — обыкновенную школьную линейку можно легко изогнуть относительно широкой стороны поперечного сечения и совершенно невозможно изогнуть относительно его короткой стороны. При этом общая площадь сечения в обоих случаях одинакова. На основании этого примера становится очевидным, что на сопротивление некоторым видам деформации оказывает влияние (иногда — решающее) не только величина площади сечения бруса, но и его геометрическая форма.
При изучении деформаций изгиба и кручения нам потребуется знание некоторых геометрических характеристик плоских сечений, которые оказывают влияние на способность конструкций сопротивляться деформациям относительно той или иной оси либо полюса (точки).

Чтобы понять суть явления и влияния этих геометрических характеристик на сопротивление бруса, например, изгибу, следует обратиться к основополагающим постулатам сопромата. Как известно из установленного в 1660 году английским физиком Робертом Гуком закона, напряжение в сечениях бруса прямо пропорционально его относительному удлинению. Очевидно, что волокна, расположенные дальше от оси изгиба, растягиваются (или сжимаются) сильнее, чем расположенные вблизи оси. Следовательно, и напряжения возникающие в них будут бόльшими.
Можно привести условную сравнительную аналогию между напряжением в разных точках сечения бруса с моментом силы — чем больше плечо силы — тем больше ее момент (относительно оси или точки). Аналогично — чем дальше от какого-либо полюса (оси) отстоит точка в сечении, тем большее напряжение в ней возникает при попытке изогнуть или скрутить брус относительно этого полюса (оси).

Статический момент площади

Статическим моментом площади плоской фигуры относительно оси, лежащей в той же плоскости, называется взятая по всей площади сумма произведений элементарных площадок (Si) на расстояния (ri)от них до этой оси.

что называют статическим моментом площади

Если упростить это определение, то статический момент инерции плоской фигуры относительно какой-либо оси (лежащей в той же плоскости, что и фигура) можно получить следующим образом:

  • разбить фигуру на крохотные (элементарные) площадки (рис. 1);
  • умножить площадь каждой площадки на расстояние ri от ее центра до рассматриваемой оси;
  • сложить полученные результаты.

Статический момент площади плоской фигуры обозначают S с индексом оси, относительно которой он рассматривается: Sx , Sy , Sz .

Примечание: в разных учебниках или других источниках информации обозначение тех или иных физических величин может отличаться от приведенных на этом сайте. Как вы понимаете, от условного обозначения величин суть описываемых явлений и закономерностей не изменяется.

Анализ этих формул позволяет сделать вывод, что статический момент площади фигуры относительно оси, лежащей в этой же плоскости, равен произведению площади фигуры на расстояние от ее центра тяжести до этой оси.
Из этого вывода следует еще один вывод — если рассматриваемая ось проходит через центр тяжести плоской фигуры, то статический момент этой фигуры относительно данной оси равен нулю.

Единица измерения статического момента площади — метр кубический (м 3 ).
При определении статического момента площади сложной фигуры можно применять метод разбиения, т. е. определять статический момент всей фигуры, как алгебраическую сумму статических моментов отдельных ее частей. При этом сложная геометрическая фигура разбивается на простые по форме составные части — прямоугольники, треугольники, окружности, дуги и т. п., затем для каждой из этих простых фигур подсчитывается статический момент площади, и определяется алгебраическая сумма этих моментов.

Полярный момент инерции

Полярным моментом инерции плоской фигуры относительно полюса (точки), лежащего в той же плоскости, называется сумма произведений элементарных площадок (Si) этой фигуры на квадрат их расстояний (r 2 i) до полюса.
Полярный момент инерции обозначают Iρ (иногда его обозначают Jρ ), а формула для его определения записывается так:

Единица измерений полярного момента инерции — м 4 , из чего следует, что он не может быть отрицательным.
Понятие полярного момента инерции понадобится при изучении деформаций кручения круглых валов, поэтому приведем формулы для определения полярного момента квадратного, круглого и кольцевого сечения.

Видео:9.1. Геометрические характеристики плоских сечений. Общие сведения. Статический момент площадиСкачать

9.1. Геометрические характеристики плоских сечений.  Общие сведения.  Статический момент площади

6.1. Статический момент площади сечения

что называют статическим моментом площади
что называют статическим моментом площади
что называют статическим моментом площади

6.1. СТАТИЧЕСКИЙ МОМЕНТ ПЛОЩАДИ СЕЧЕНИЯ

Статический момент площади – распространенная на всю площадь сумма произведений элементарных площадок dA на расстояние от них до этой оси Это понятие аналогично моменту силы относительно оси. Если предположить, что А – вес пластины, имеющей форму нашего сечения, то статический момент Sz – это момент силы тяжести пластины относительно оси z. Размерность: единицы длины в третьей степени (см3; м3). Знаки: плюс, ноль и минус. Ось центральная – ось, относительно которой статический момент площади равен нулю. Центр тяжести сечения – точка пересечения центральных осей. Если фигура имеет ось симметрии, то эта ось является центральной. Статический момент составного сечения равен сумме статических моментов элементов этого сечения. Это следует из свойства определенного интеграла, который можно вычислять по частям – свойство аддитивности (от англ. add – прибавлять, присоединять, складывать). При известных статических Рис. 6.2. Связь знака статического момента площади с его положением в координатной системе моментах частей сечения можно найти координаты центра тяжести состав- ной фигуры: Пример 6.1. Определить положение центральных осей, параллельных основанию и высоте фигуры. Решение Разбиваем сложную фигуру на две простые, в конкретном примере – на два прямоугольника. Их центры тяжести расположены посредине высоты и посредине ширины. Координаты центров тяжести и площади простых фигур Статические моменты площадей простых фигур Координаты центра тяжести составной фигуры Через найденную точку проводим центральные оси zC и yC, параллельные основанию фигуры и ее высоте. Примечание. Центр тяжести фигуры, составленной из двух частей, лежит на линии, соединяющей центры тяжести простых фигур ее составляющих, причем расстояния до них обратно пропорциональны площадям простых фигур. Если сложная фигура составлена из нескольких простых, то общий центр тяжести находится внутри многоугольника, вершинами которого являются центры тяжести простых фигур.

Видео:Сопротивление материалов. Лекция: геометрические характеристики сечений - статические моментыСкачать

Сопротивление материалов. Лекция: геометрические характеристики сечений - статические моменты

Статические моменты площади сечения

что называют статическим моментом площади

что называют статическим моментом площади

что называют статическим моментом площади

Статическим моментом площади сечения относительно какой-либо оси, лежащей в плоскости сечения, называется сумма произведений площадей элементарных площадок на их расстояние до этой оси z, где A─ площадь всего сечения; ( 17 Рис.1.2 y и z – соответственно расстояния от элементарной площадки dA до оси z и y .

Статические моменты Sz и Sy имеют размерность единицы длины в третьей степени, обычно в см3 или м3. Статический момент может быть положительным, отрицательным и, в частности, равным нулю. Если известны координаты ( y,czc) центра тяжести (C ) сечения, то статические моменты площади сечения, на основании теоремы Вариньона, можно определить по формулам:

c По известным статическим моментам из (1.4) можно определить положение центра тяжести сечения где А – площадь сечения; y,ccz– соответственно расстояния от центра тяжести сечения до вспомогательных осей z и y , относительно которых определяется его положение. Центр тяжести сечения – это точка, относительно которой сечение будет находиться в равновесии (если сечение рассматривать как тонкую пластину).

Анализируя зависимость (1.5) видим, что если S 0, то оси z и y проходят через центр тяжести сечения.

Оси, относительно которых стати-ческие моменты площади равны нулю, называются центральными осями. Любая ось симметрии является центральной осью, так как центр тяжести сечения лежит на этой оси и, следовательно, статический момент относительно ее всегда равен нулю. Например, ось y (рис. 1.2) является осью симметрии прямоугольного сечения и, следовательно, она центральная.

Ось z1 не совпадает с центром тяжести сечения, поэтому не является центральной, и статический момент площади сечения относительно оси z1 будет не равен нулю 1. Если сечение представляет сложную фигуру (рис. 1.3), состоящую из ряда простых фигур, например, прямоугольника, треугольника и т. д., для которых известны положения центров тяжести, то в этом случае статический момент всей фигуры можно определить как сумму статических моментов этих простых фигур; (1.4) (1.5)

Выражения (1.6) надо понимать в

алгебраическом виде, т. е. координаты yi и zi необходимо подставлять с учетом знака, а также в случае вырезов знак перед соответствующим членом необходимо сменить на минус. Например, для сечения (рис. 1.4) статические моменты относительно осей y и z1 будут равны z 0. Статический момент S0, так как ось y является центральной осью и координаты z также в выражении Sz1 координата y10 .

С учетом (1.6) координаты центра тяжести для сложной фигуры по отношению к вспомогательным осям z и y определятся по формулам: n ─ площади простейших сечений, на которые разбивается сложное сечение; yn─ координаты центров тяжести простейших сечений по отношению к вспомогательным осям z1 и y1.

В ряде случаев при вычислении статических моментов удобно использовать формулы с двойным интегралом вида: Здесь D ─ область интегрирования. Пример 1.1 Вычислить координату центра тяжести сечения в виде полукруга (рис. 1.5). Решение: Определяем положение центра тяжести по формуле ;Площадь сечения с учетом уравнения окружности.

По этой ссылке вы найдёте полный курс лекций по математике:

Возможно вам будут полезны данные страницы:

Присылайте задания в любое время дня и ночи в ➔ что называют статическим моментом площадичто называют статическим моментом площади

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

🎦 Видео

Техническая механика | Центр тяжести | Статический момент | Сечение компонентаСкачать

Техническая механика | Центр тяжести | Статический момент | Сечение компонента

Статический моментСкачать

Статический момент

Моменты инерции сечения из простых фигурСкачать

Моменты инерции сечения из простых фигур

Как найти центр тяжести любой фигуры?Скачать

Как найти центр тяжести любой фигуры?

Сопротивление материалов. Лекция: геометрические характеристики сечений - моменты инерцииСкачать

Сопротивление материалов. Лекция: геометрические характеристики сечений - моменты инерции

Ship's Stability - TOP Questions on InterviewСкачать

Ship's Stability - TOP Questions on Interview

Момент инерцииСкачать

Момент инерции

Определение центра тяжести сложной фигуры. СопроматСкачать

Определение центра тяжести сложной фигуры. Сопромат

Геометрические характеристики. Моменты инерции. Радиусы инерции. Сопромат.Скачать

Геометрические характеристики. Моменты инерции. Радиусы инерции. Сопромат.

Вычисление моментов инерции составного сеченияСкачать

Вычисление моментов инерции составного сечения

Моменты инерции Прямоугольника ► Вывод моментов инерции для прямоугольникаСкачать

Моменты инерции Прямоугольника ► Вывод моментов инерции для прямоугольника

Понимание напряжений в балкахСкачать

Понимание напряжений в балках

Закон БернуллиСкачать

Закон Бернулли

Радиус инерции. Момент сопротивленияСкачать

Радиус инерции. Момент сопротивления

Калькулятор геометрических характеристик сечений стержней 1. ТеорияСкачать

Калькулятор геометрических характеристик сечений стержней 1. Теория

Момент силы: почему его так назвали ?Скачать

Момент силы: почему его так назвали ?
Поделиться или сохранить к себе: